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Abstract We prove existence of a ground state and resonances in the standard model of the
non-relativistic quantum electro-dynamics (QED). To this end we introduce a new canonical
transformation of QED Hamiltonians and use the spectral renormalization group technique
with a new choice of Banach spaces.
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1 Introduction

Problem and Outline of the Results Non-relativistic quantum electro-dynamics (QED) de-
scribes processes arising from interaction of the quantized electro-magnetic field with non-
relativistic matter, such as emission and absorption of radiation by atoms and molecules.
The mathematical framework of this theory is well established. It is given in terms of the
time-dependent Schrödinger equation,

i∂tψ = HSM
g ψ,

where ψ is a differentiable path in the Hilbert space H = Hp ⊗ Hf , which is the tensor
product of the state spaces of the matter system and the quantized electromagnetic field, and
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HSM
g is the standard quantum Hamiltonian on H = Hp ⊗ Hf , given by1

HSM
g =

n∑

j=1

1

2mj

(i∇xj
+ gA(xj ))

2 + V (x) + Hf . (1.1)

Here the superindex SM stands for ‘standard model’, mj and xj , j = 1, . . . , n, are the par-
ticle masses and positions, x = (x1, . . . , xn), V (x) is the total potential affecting particles,2

g > 0 is a coupling constant related to the particle charge, A(y) is the electromagnetic vector
potential and Hf is the photon Hamiltonian. To have a self-adjoint and bounded from below
quantum Hamiltonian we have to subject A(y) to an ulraviolet (UV) cut-off.3 The notions
above and the remaining symbols are explained in detail below.

If we fix the particle potential V (x) (e.g. taking it to be the total Coulomb potential),
then the Hamiltonian (1.1) depends on two free parameters, the coupling constant g and the
ultraviolet cut-off, not displayed here. As was mentioned above, g is related to the particle
(electron) charges and the ultraviolet cut-off, to the particle (electron) renormalized mass
(see [6, 18, 33, 34, 46, 53, 54], and [59] for a recent review).

For a large class of potentials V (x), including Coulomb potentials, and under an ultra-
violet cut-off, the operator HSM

g is self-adjoint (see e.g. [13, 42]). The stability of the system
under consideration is equivalent to the statement of existence of the ground state of HSM

g ,
i.e. an eigenfunction with the smallest possible energy. The physical phenomenon of ra-
diation is expressed mathematically as emergence of resonances out of excited states of a
particle system due to coupling of this system to the quantum electro-magnetic field. We
define the resonances and discuss their properties below.

In this paper we prove existence of the ground state and resonance states of HSM
g orig-

inating from the ground state and from excited states of the particle system. Our approach
provides also an effective way to compute the ground states and resonance states and their
eigenvalues. We do not impose any extra conditions on HSM

g , except for smallness of the
coupling constant g and an ultraviolet cut-off in the interaction.

The standard model has been extensively studied in the last decade, see the book [59] and
reviews [3, 28, 38, 43, 44] and references therein for a partial list of contributions and refer-
ences and references [8, 9, 16, 17, 19, 20, 24, 35, 57] for some of more recent contributions.

The existence (and uniqueness) of the ground state was proven by compactness tech-
niques in [4, 13, 31, 39–41, 45, 52] and in a constructive way, in [7].4 The existence of
the resonances was proven so far only for confined potentials (see [11, 12] and, for a book
exposition, [32]).5

Our proof contains two new ingredients: a new canonical transformation of the Hamil-
tonian HSM

g (which we call the generalized Pauli-Fierz transformation, Sect. 2) and new—
momentum anisotropic—Banach spaces for the spectral renormalization group (RG) which
allow us to control the RG flow for more singular coupling functions. (In the terminology of

1For discussion of physics emerging out of this Hamiltonian see [21, 22]. To simplify the exposition we
omitted the interaction of the spin with magnetic field

∑n
j=1

g
2mj

σj ·curlA(xj ). It can be easily incorporated

into our analysis.
2It could be helpful to think about the particles as electrons in an external field of static nuclei.
3For a given quantum model the UV cut-off is defined by an energy scale on which this model is applicable.
In our case, the relevant energy scale is the characteristic energies of the particle motion.
4Analyticity of the ground state eigenvalues in parameters was proven in [30].
5Note that the papers [13, 31, 39, 45, 52] include the interaction of the spin with magnetic field in the
Hamiltonian, while the present paper omits it.
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the RG approach the perturbation in (1.1) is marginal (cf. critical nonlinearities in nonlinear
PDEs), which is notoriously hard to treat; see a discussion below.) A part of this paper which
deals with adapting and clarifying some points of the RG technique for the present situation
(see Appendix B) is rather technical but can be used in other problems of non-relativistic
QED.

Standard Model We now describe the standard model of non-relativistic QED. We use
the units in which the Planck constant divided by 2π , the speed of light and the electron
mass are equal to 1(� = 1, c = 1 and m = 1). In these units the electron charge is equal
to −√

α, where α = e2

4π�c
≈ 1

137 (the fine-structure constant) and the distance, time and
energy are measured in units of �/mc = 3.86 × 10−11cm, �/mc2 = 1.29 × 10−21 s and
mc2 = 0.511 MeV, respectively (natural units).

We consider the matter system consisting of n charged particles interacting between
themselves and with external fields and with a quantized electromagnetic field. The Hamil-
tonian operator of the particle system alone is given by

Hp := −
n∑

j=1

1

2mj

�xj
+ V (x), (1.2)

where �xj
is the Laplacian in the variable xj and, recall, V (x) is the total potential of the

particle system. This operator acts on a Hilbert space of the particle system, denoted by Hp ,
which is either L2(R3n) or a subspace of this space determined by a symmetry group of the
particle system. We assume that V (x) is real and s.t. the operator Hp is self-adjoint on the
domain of

∑n

j=1
1

2mj
�xj

.
The quantized electromagnetic field is described by the quantized vector potential

A(y) =
∫

(eikya(k) + e−ikya∗(k))χ(k)
d3k√|k| , (1.3)

written in the Coulomb gauge (divA(y) = 0). Here χ is an ultraviolet cut-off : χ(k) =
1

(2π)3
√

2
in a neighborhood of k = 0 and it vanishes sufficiently fast at infinity (we com-

ment of this below). The dynamics of the quantized electromagnetic field is given through
the quantum Hamiltonian

Hf =
∫

d3kω(k)a∗(k) · a(k), (1.4)

where ω(k) = |k| is the dispersion law connecting the energy of the field quantum with its
wave vector k. Both, A(y) and Hf , act on the Fock space Hf ≡ F . Thus the Hilbert space
of the total system is H := Hp ⊗ F .

Above, a∗(k) and a(k) denote the creation and annihilation operators on F . The families
a∗(k) and a(k) are operator-valued generalized, transverse vector fields:

a#(k) :=
∑

λ∈{−1,1}
eλ(k)a#

λ(k),

where eλ(k) are polarization vectors, i.e. orthonormal vectors in R
3 satisfying k · eλ(k) = 0,

and a#
λ(k) are scalar creation and annihilation operators satisfying canonical commutation

relations. The right side of (1.4) can be understood as a weak integral. See Appendix C for
a brief review of definitions of the Fock space, the creation and annihilation operators and
the operator Hf .
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The Hamiltonian of the total system, matter and radiation field, is given by (1.1). First,
we consider (1.1) for an atom or molecule. Then, in the natural units, g = √

α and V (x), the
total Coulomb potential of the particle system, is proportional to α. Rescaling x → α−1x

and k → α2k we arrive at (1.1) with g := α3/2, V (x) of the order O(1)6 and A(x) replaced
by A′(x), where A′(x) = A(αx)|χ(k)→χ ′(k), and where χ ′(k) := χ(α2k) (see [10, 13]). After
that we drop the prime in the vector potential A′(x) and the ultraviolet cut-off χ ′(x) (see a
discussion of the latter below). Finally, we relax the restriction on V (x) by considering the
standard generalized n-body potentials (see e.g. [49]):

(V) V (x) = ∑
i Wi(πix), where πi are a linear maps from R

3n to R
mi ,mi ≤ 3n and Wi

are Kato-Rellich potentials (i.e. Wi(πix) ∈ Lpi (Rmi ) + (L∞(R3n))ε with pi = 2 for
mi ≤ 3,pi > 2 for mi = 4 and pi ≥ mi/2 for mi > 4, see [47, 58]).

Under the assumption (V), the operator HSM
g is self-adjoint. In order to tackle the reso-

nances we choose the ultraviolet cut-off, χ(k), so that

The function θ → χ(e−θ k) has an analytic continuation from the real axis, R, to the
strip {θ ∈ C|| Im θ | < π/4} as a L2

⋂
L∞(R3) function,

e.g. χ(k) = e−|k|2/κ2
. Furthermore, we assume that the potential, V (x), satisfies the condi-

tion:

(DA) The the particle potential V (x) is dilation analytic in the sense that the operator-
function θ → V (eθx)(−� + 1)−1 has an analytic continuation from the real axis, R,
to the strip {θ ∈ C|| Im θ | < θ0} for some θ0 > 0.

In order not to deal with the problem of center-of-mass motion which is not essential
in the present context, we assume that either some of the particles (nuclei) are infinitely
heavy or the system is placed in a binding, external potential field. This means that the
operator Hp has isolated eigenvalues below its essential spectrum. However, we expect that
the techniques developed in this paper can be extended to translationally invariant particle
systems (see [2, 23, 55]).

Ultra-Violet Cut-Off Finally, we comment on the ultra-violet cut-off χ(k) introduced in
(1.3). This cut-off makes the model well-defined. Assuming χ decays on the scale κ , in
order to correctly describe the phenomena of interest, such as emission and absorption of
electromagnetic radiation, i.e. for optical and rf modes, we have to assume that the cut-off
energy, �cκ, is much greater than the characteristic energies of the particle motion. (We
reintroduced the Planck constant, �, and speed of light, c, for a moment.) The latter motion
takes place on the energy scale of the order of the ionization energy, i.e. of the order α2mc2.
Thus we have to assume α2mc2 � �cκ .

On the other hand, for energies higher than the rest energy of the electron (mc2) the rel-
ativistic effects, such as electron-positron pair creation, vacuum polarization and relativistic
recoil, take place. Thus it makes sense to assume that �cκ � mc2. Combining the last two
conditions we arrive at the restriction α2mc2 � �cκ � mc2 or α2mc/� � κ � mc/�. In
our units this reads

α2 � κ � 1.

6In the case of a molecule in the Born-Oppenheimer approximation, the resulting V (x) also depends on the
rescaled coordinates of the nuclei.
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After the rescaling x → α−1x and k → α2k performed above the new cut-off momentum
scale, κ ′ = α−2κ , satisfies

1 � κ ′ � α−2,

which is easily accommodated by our estimates (e.g. we can have κ = O(α−1/3)). Thus we
can assume for simplicity that χ is fixed.

Resonances We define the resonances for the Hamiltonian HSM
g as follows. Consider the

dilations of particle positions and of photon momenta:

xj → eθxj and k → e−θ k,

where θ is a real parameter. Such dilations are represented by the one-parameter group of
unitary operators, Uθ, on the total Hilbert space H := Hp ⊗ F of the system (see Sect. 3).
Now, for θ ∈ R we define the deformation family

HSM
gθ := XθH

SM
g X−1

θ , (1.5)

where Xθ := Uθe
−igF with F , the self-adjoint operator defined in Sect. 2. The transforma-

tion HSM
g → e−igF HSM

g eigF is a generalization of the well-known Pauli-Fierz transforma-
tion. Note that the operator-family Xθ has the following two properties needed in order to
establish the desired properties of the resonances:

(a) Xθ are unitary for θ ∈ R;
(b) Xθ1+θ2 = Uθ1Xθ2 where Uθ are unitary for θ ∈ R.

It is easy to show (see Sect. 3) that, due to Condition (DA), the family HSM
gθ has an

analytic continuation in θ to the disc D(0, θ0), as a type A family in the sense of Kato
([50]). A standard argument shows that the real eigenvalues of HSM

gθ , Im θ > 0, coincide
with eigenvalues of HSM

g and that complex eigenvalues of HSM
gθ , Im θ > 0, lie in the complex

half-plane C
−. We show below that the complex eigenvalues of HSM

gθ , Im θ > 0, are locally
independent of θ . We call such eigenvalues the resonances of HSM

g .
It is clear from the definition that the notion of resonance extends that of eigenvalue

and under small perturbations embedded eigenvalues turn generally into resonances. Corre-
spondingly, the resonances share two ‘physical’ manifestations of eigenvalues, as poles of
the resolvent and frequencies of time-periodic and spatially localized solutions of the time-
dependent Schrödinger equation, but with a caveat. To explain the first property, we use the
Combes argument which goes as follows. By the unitarity of Xθ := Uθe

−igF for real θ ,

〈�, (HSM
g − z)−1�〉 = 〈�θ̄ , (H

SM
gθ − z)−1�θ 〉, (1.6)

where �θ = Xθ� , etc., for θ ∈ R and z ∈ C
+. Assume now that �θ and �θ have analytic

continuations into a complex neighborhood of θ = 0. Then the r.h.s. of (1.6) has an analytic
continuation in θ into a complex neighborhood of θ = 0. Since (1.6) holds for real θ , it also
holds in the above neighborhood. Fix θ on the r.h.s. of (1.6), with Im θ > 0. The r.h.s. of
(1.6) can be analytically extended across the real axis into the part of the resolvent set of
HSM

gθ which lies in C− and which is connected to C
+. This yields an analytic continuation

of the l.h.s. of (1.6). The real eigenvalues of HSM
gθ give real poles of the r.h.s. of (1.6) and

therefore they are the eigenvalues of HSM
g . The complex eigenvalues of HSM

gθ , which are at
the resonances of HSM

g , yield complex poles of the r.h.s. of (1.6) and therefore they are poles
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of the meromorphic continuation of the l.h.s. of (1.6) across the spectrum of HSM
g onto the

second Riemann sheet. This pole structure is observed physically as bumps in the scattering
cross-section or poles in the scattering matrix. There are some subtleties involved which we
explain below.

The second manifestation of resonances alluded to above is as metastable states
(metastable attractors of system’s dynamics). Namely, one expects that the ground state
is asymptotically stable and the resonance states are (asymptotically) metastable, i.e. at-
tractive for very long time intervals. More specifically, let z∗, Im z∗ ≤ 0, be a ground state
or resonance eigenvalue. One expects that for an initial condition, ψ0, localized in a small
energy interval around the ground state or resonance energy, Re z∗, the solution, ψ , of the
time-dependent Schrödinger equation, i∂tψ = HSM

g ψ , is of the form

e−iHSM
g tψ0 = e−iz∗tφ∗ + Oloc(t

−α) + Ores(g
β), (1.7)

for some α,β > 0 (depending on ψ0). Here φ∗ is either the ground state (if z∗ is the ground
state energy) or an excited state of the unperturbed system (if z∗ is a resonance eigenvalue);
the error term Oloc(t

−α) satisfies ‖(1 + |T |)−νOloc(t
−α)‖ ≤ Ct−α , where T is the generator

of the group Uθ , with an appropriate ν > 0; and the error term Ores(g
β) is absent in the

ground state case. The reason for the latter is that, unlike bound states, there is no ‘canonical’
notion of the resonance state.

The asymptotic stability of the ground state is equivalent to the statement of local decay.
Its proof was completed recently in [25, 27] (see [13, 14] for complementary results). A
statement involving survival probabilities of excited states which is related to the metasta-
bility of the resonances is proven in [1] using the results of this paper (see [36] for related
results and [13, 51, 56] for partial results).

The dynamical picture of the resonance described above implies that the imaginary part
of the resonance eigenvalue, called the resonance width, can be interpreted as the decay rate
probability, and its reciprocal, as the life-time, of the resonance.

Main Results Let ε
(p)

0 < ε
(p)

1 < · · · be the isolated eigenvalues of the particle Hamiltonian
Hp . In what follows we fix an energy ν ∈ (ε

(p)

0 , infσess(Hp)) below the ionization thresh-
old infσess(Hp) and denote ε

(p)
gap ≡ ε

(p)
gap(ν) := min{|ε(p)

i − ε
(p)

j | | i �= j, ε
(p)

i , ε
(p)

j ≤ ν} and

j (ν) := max{j : ε(p)

j ≤ ν}.
We now state the main results of this paper.

Theorem 1.1 Assume Condition (V). Fix e
(p)

0 < ν < infσess(Hp) and let g � min(ε
(p)
gap(ν),√

ε
(p)
gap(ν) tan(θ0/2)). Then

(i) Each eigenvalue, ε
(p)

j , of HSM
g=0, which is less than ν, turns into resonance and/or bound

state eigenvalues, εj,k , of HSM
g , g �= 0;

(ii) ∀j , εj,k = ε
(p)

j + O(g2) and the total multiplicity of εj,k∀k equals the multiplicity of

ε
(p)

j ;
(iii) HSM

g has a ground state, originating from a ground state of HSM
g=0;

(iv) εj,k’s are independent of θ , 0 < Im θ ≥ θ0.

The statements concerning the excited states are proven under additional Condition
(DA).
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By statement (ii), we have ε0 := infσ(HSM
g ). Let

Sj,k :=
{
z ∈ C

∣∣∣
1

2
Re(eθ (z − εj,k)) ≥ | Im(eθ (z − εj,k))|

}
. (1.8)

Information about meromorphic continuation of the matrix elements of the resolvent and its
behavior near the resonances is given in the next theorem.

Theorem 1.2 Assume g � ε
(p)
gap(ν) and Conditions (V) and (DA). Then for a dense set (de-

fined in (1.9) below) of vectors � and �, the matrix elements F(z,�,�) := 〈�, (HSM
g −

z)−1�〉 of the resolvent of HSM
g have meromorphic continuations from C

+ across the inter-
val (ε0, ν) of the essential spectrum of HSM

g into the domain {z ∈ C
− | ε0 < Re z < ν}, with

the wedges Sj,k,0 ≤ j ≤ j (ν), deleted. Furthermore, this continuation has poles at εj,k in
the sense that limz→εj,k

(εj,k − z)F (z,�,�) is finite and, for a finite-dimensional subspace
of �’s and �’s, nonzero.

Discussion

(i) Condition (DA) could be weakened considerably so that it is satisfied by the potential
of a molecule with fixed nuclei (cf. [49]).

(ii) Generically, excited states turn into the resonances, not bound states. A condition which
guarantees that this happens is the Fermi Golden Rule (FGR) (see [13]). It expresses the
fact that the coupling of unperturbed embedded eigenvalues of HSM

0 to the continuous
spectrum is effective in the second order of the perturbation theory. It is generically
satisfied.

(iii) With a little more work one can establish an explicit restriction on the coupling con-
stant g in terms of the particle energy difference e

(p)
gap(ν) and appropriate norms of the

coupling functions.
(iv) The second theorem implies the absolute continuity of the spectrum and its proof gives

also the limiting absorption principle in the interval (ε0, ν), but these results have al-
ready been proven by the spectral deformation and commutator techniques [13, 14,
25].

(v) The meromorphic continuation in question is constructed in terms of matrix elements
of the resolvent of a complex deformation, HSM

g,θ , Im θ > 0, of the Hamiltonian HSM
g .

(vi) The proof of Theorem 1.1 gives fast convergent expressions in the coupling constant g

for the ground state energy and resonances.

The main new result of this work is the existence of resonances and an algorithm for their
computation.

The dense set mentioned in the Theorem 1.2 is defined as

D :=
⋃

n>0,a>0

Ran
(
χN≤nχ|T |≤a

)
. (1.9)

Here N = ∫
d3ka∗(k)a(k) is the photon number operator and, recall, T denotes the self-

adjoint generator of the one-parameter group Uθ, θ ∈ R (see Sect. 3). Since N and T com-
mute, this set is dense. We claim that for any ψ ∈ D, the family Uθe

−igF (x)ψ has an analytic
continuation from R to the complex disc D(0, θ0). Indeed, by the construction in the next
section, the family Fθ(x) := UθF(x)U−1

θ has an analytic continuation from R to the com-
plex disc D(0, θ0). For θ complex this continuation is a family of non-self-adjoint operators.
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However, the exponential e−igFθ (x) is well defined on the dense domain
⋃

n<∞ RanχN≤n.
Since

Uθe
igF(x)ψ = eigFθ (x)χN≤nUθχ|T |≤aψ

for some n and a, s.t. χN≤nχ|T |≤aψ = ψ , the family Uθe
−igF (x)ψ has an analytic continua-

tion in θ from R to D(0, θ0).

Infrared Problem As is shown in Theorem 1.1 and is understood in Physics on the basis
of formal—but rather non-trivial—perturbation theory, the resonances arise from the eigen-
values of the non-interacting Hamiltonian HSM

0 . To find the spectrum of HSM
0 one verifies

that Hf defines a positive, self-adjoint operator on F with purely absolutely continuous
spectrum, except for a simple eigenvalue 0 corresponding to the vacuum eigenvector � (see
Appendix C). Thus, for g = 0 the low energy spectrum of the operator HSM

0 consists of
branches [ε(p)

i ,∞) of absolutely continuous spectrum and of the eigenvalues ε
(p)

i ’s, sitting
at the continuous spectrum ‘thresholds’ ε

(p)

i ’s. The absence of gaps between the eigenvalues
and thresholds is a consequence of the fact that the photons are massless. This leads to hard
problems in perturbation theory, known collectively as the infrared problem.

This situation is quite different from the one in Quantum Mechanics (e.g. Stark effect
or tunneling decay) where the resonances are isolated eigenvalues of complexly deformed
Hamiltonians. This makes the proof of their existence and establishing their properties, e.g.
independence of θ (and, in fact, of the transformation group Xθ ), relatively easy. In the non-
relativistic QED (and other massless theories), giving meaning of the resonance poles and
proving independence of their location of θ is a rather involved matter. We illustrate it on
the proof of the statement (1.7). To this end we use the formula

e−iH tf (H) = 1

π

∫ ∞

−∞
dλf (λ)e−iλt Im(H − λ − i0)−1

(see e.g. [58]) connecting the propagator and the resolvent. For the ground state, the absolute
continuity of the spectrum outside the ground state energy, or a stronger property of the
limiting absorption principle, suffices to establish the result in question. In the resonance
case, one observes the fact that the meromorphic continuation of matrix elements of the
resolvent (on an appropriate dense set of vectors) to the second Riemann sheet has poles
at resonances and one performs a suitable deformation of the contour of integration in the
formula above to pick up the contribution of these poles (see e.g. [48]). This works when the
resonances are isolated (see [48, 49]). In the present case, proving (1.7) is a subtle problem.

Resonance Poles Can we make sense of the resonance poles in the present context? The
answer to this question is obtained in [1], where it is shown, assuming the results of this
paper, that for each � and � from a dense set of vectors, the meromorphic continuation,
F(z,�,�), of the matrix element 〈�, (HSM

g − z)−1�〉, described above, is of the following
form:

F(z,�,�) = (εj,k − z)−1p(�,�) + r(z,�,�), (1.10)

near the resonance εj of HSM
g . Here p and r(z) are sesquilinear forms in � and � with r(z),

analytic in z ∈ Q := {z ∈ C
−| ε0 < Re z < ν}/⋃j≤j (ν),k Sj,k and bounded on the intersection

of a neighborhood of εj,k with Q as

|r(z,�,�)| ≤ C�,�|εj,k − z|−γ for some γ < 1.
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Moreover, p �= 0 at least for one pair of vectors � and � and p = 0 for a dense set of vectors
� and � in a finite co-dimension subspace. The multiplicity of a resonance is the rank of the
residue at the pole. The next important problem is to connect the ground state and resonance
eigenvalues to poles of the scattering matrix.

Approach To prove Theorems 1.1 and 1.2 we apply the spectral renormalization group
(RG) method ([5, 11, 12, 26, 30]) to the Hamiltonians HSM

gθ=0 = e−igF HSM
g eigF (the ground

state case) and HSM
gθ , Im θ > 0, (the resonance case). Note that the version of RG needed in

this work uses new—anisotropic—Banach spaces of operators, on which the renormaliza-
tion group acts. It is developed in [26]. Using the RG technique we describe the spectrum of
the operator HSM

gθ in {z ∈ C
−|ε0 < Re z < ν} from which we derive Theorems 1.1 and 1.2.

In the terminology of the Renormalization Group approach the perturbation in (1.1) is
marginal (similar to critical nonlinearities in nonlinear PDEs). This leads to the presence of
the second zero eigenvalue in the spectrum of the linearized RG flow (note that there is no
spectral gap in the linearized RG flow). This case is notoriously hard to treat as one has to
understand the dynamics on the implicitly defined central manifold. The previous works [11,
12] remove it by either assuming the non-physical infrared behavior of the vector potential
by replacing |k|−1/2 in the vector potential (1.3) by |k|−1/2+ε , with ε > 0, or by assuming
presence of a strong confining external potential so that V (x) ≥ c|x|2 for x large. Our work
shows that in non-relativistic QED one can overcome this problem by suitable canonical
transformation and choice of the Banach space.

Our approach is also applicable to Nelson’s model describing interaction of particles with
massless lattice excitations (phonons) described by a quantized, massless, Boson field (see
Appendix D), and Theorems 1.1 and 1.2 are still valid if replace there the operator HSM

g

by the Hamiltonian HN
g for this model. (In this case we recover earlier results.) In fact, we

consider a class of generalized particle-field operators (introduced in Sect. 4) which contains
both, operators HPF

g and HN
g .

Organization of the Paper In Sect. 2 we introduce the generalized Pauli-Fierz transforma-
tion (HSM

g → e−igF HSM
g eigF =: HPF

g ) and in Sect. 3, the complex deformation of quantum
Hamiltonians. In Sect. 4 we introduce a class of generalized particle-field Hamiltonians and
show that the Hamiltonian HPF

g obtained in Sect. 2 and the Hamiltonian HN
g as well as

their dilation deformations belong to this class. In the rest of the paper we study the Hamil-
tonians from the class introduced and derive Theorems 1.1 and 1.2 from the results about
these Hamiltonians. In Sect. 5 we introduce an isospectral Feshbach-Schur map and use
it to map the generalized particle-field Hamiltonians into Hamiltonians acting only on the
field Hilbert space—Fock space (elimination of particle and high photon energy degrees of
freedom). The image of this map is shown in Sect. 7 to belong to a certain neighborhood in
the Banach spaces introduced in Sect. 6. The latter spaces are an anisotropic—in the mo-
mentum representation—modification of the Banach spaces used in [5, 11, 12]. In Sect. 8
we use the results of [26] on the spectral renormalization group (cf. [5, 11, 12]) to describe
the spectrum of generalized particle-field Hamiltonians. Finally, in Sect. 9 we prove The-
orems 1.1 and 1.2. In Appendix A we recall some properties of the Feshbach-Schur map
and in Appendix B we prove the main result of Sect. 6. The results of both appendices
are close to certain results from [5, 26, 30], but there are a few important differences. The
main ones are that we have to deal with unbounded interactions and, more importantly, with
momentum-anisotropic spaces. Some basic facts about Fock spaces and creation and an-
nihilation operators on them are collected in Appendix C and in Appendix D we describe
the Nelson Hamiltonians and their dilation deformations. In order to simplify the notation
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and exposition below we assume that the particle eigenvalues, ε
(p)

j , we deal with, are non-
degenerate and consequently the subindex k can be omitted in εj,k and Sj,k which from now
on are written as εj and Sj . In order to treat with degenerate eigenvalues we would have to
deal with matrix-valued operators on the Fock space.

2 Generalized Pauli-Fierz Transformation

In order to simplify notation from now on we assume that the number of particles is 1, n = 1.
We also set the particle mass to 1, m = 1. The generalizations to an arbitrary number of
particles is straightforward. We define the generalized Pauli-Fierz transformation mentioned
in the introduction:

HPF
g := e−igF (x)HSM

g eigF(x), (2.1)

where F(x) introduced below. We call the resulting Hamiltonian the generalized Pauli-Fierz
Hamiltonian. Now, F(x) is the self-adjoint operator on the state space H given by

F(x) =
∑

λ

∫
(f̄x,λ(k)aλ(k) + fx,λ(k)a∗

λ(k))
d3k√|k| , (2.2)

with the coupling function fx,λ(k) chosen as

fx,λ(k) := e−ikx χ(k)√|k|ϕ(|k| 1
2 eλ(k) · x). (2.3)

The function ϕ is assumed to be C2, bounded, with bounded second derivative, and satisfy-
ing ϕ′(0) = 1. We assume also that ϕ has a bounded analytic continuation into the wedge
{z ∈ C|| arg(z)| < θ0}. We compute

HPF
g = 1

2
(p − gA1(x))2 + Vg(x) + Hf + gG(x) (2.4)

where A1(x) = A(x) − ∇F(x),Vg(x) := V (x) + 2g2
∑

λ

∫ |k||fx,λ(k)|2d3k and

G(x) := −i
∑

λ

∫
|k|(f̄x,λ(k)aλ(k) − fx,λ(k)a∗

λ(k))
d3k√|k| . (2.5)

(The terms gG and Vg − V come from the commutator expansion e−igF (x)Hf eigF(x) =
−ig[F,Hf ] − g2[F, [F,Hf ]].) Observe that the operator-family A1(x) is of the form

A1(x) =
∑

λ

∫
(eikxaλ(k) + e−ikxa∗

λ(k))χλ,x(k)
d3k√|k| , (2.6)

where the coupling function χλ,x(k) is defined as follows

χλ,x(k) := eλ(k)e−ikxχ(k) − ∇xfx,λ(k).

It satisfies the estimates

|χλ,x(k)| ≤ const min(1,
√|k|〈x〉), (2.7)
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with 〈x〉 := (1 + |x|2)1/2, and

∫
d3k

|k| |χλ,x(k)|2 < ∞. (2.8)

The fact that the operators A1 and G have better infra-red behavior than the original vector
potential A, is used in proving, with a help of a renormalization group, the existence of the
ground state and resonances for the Hamiltonian HSM

g .
We note that for the standard Pauli-Fierz transformation, the function fx,λ(k) is chosen

to be χ(k)eλ(k) · x, which results in the operator G (which in this case is proportional to
(the electric field at x = 0) · x) growing as x.

We mention for further references that the operator (2.4) can be written as

HPF
g = HPF

0 + IPF
g , (2.9)

where HPF
0 = H0 + 2g2

∑
λ

∫ |k||fx,λ(k)|2d3k + g2
∑

λ

∫ |χλ(k)|2
|k| d3k, with H0 := Hp + Hf

and IPF
g is defined by this relation. Note that the operator IPF

g contains linear and quadratic
terms in the creation and annihilation operators and that the operator HPF

0 is of the form
HPF

0 = HPF
p + Hf where

HPF
p := Hp + 2g2

∑

λ

∫
|k||fx,λ(k)|2d3k + g2

∑

λ

∫ |χλ(k)|2
|k| d3k (2.10)

with Hp given in (1.2).
Since the operator F(x) in (2.1) is self-adjoint, the operators HSM

g and HPF
g have the

same eigenvalues with closely related eigenfunctions and the same essential spectra.

3 Complex Deformation and Resonances

In this section we define complex transformation of the Hamiltonian under consideration
which underpins the proof of the resonance part of Theorem 1.1 and the proof of Theo-
rem 1.2. Let uθ be the dilatation transformation on the one-photon space, i.e., uθ : f (k) →
e−3θ/2f (e−θ k). Define the dilatation transformation, Uf θ , on the Fock space, Hf ≡ F , by
second quantizing uθ : Uf θ := eiT θ where T := ∫

a∗(k)ta(k)dk and t is the generator of the
group uθ (see Appendices C and D for the careful definition of the above integral). This
gives, in particular,

Uf θa
∗(f )U−1

f θ = a∗(uθf ). (3.1)

Denote by Upθ the standard dilation group on the particle space: Upθ : ψ(x) → e
3
2 θψ(eθx)

(remember that we assumed that the number of particles is 1). We define the dilation trans-
formation on the total space H = Hp ⊗ Hf by

Uθ = Upθ ⊗ Uf θ . (3.2)

For θ ∈ R the above operators are unitary and map the domains of the operators below
into themselves. Consequently, we can define the family of Hamiltonians originating from
the Hamiltonian HSM

g as

HSM
gθ := Uθe

−igF (x)HSM
g eigF(x)U−1

θ . (3.3)
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Under Condition (DA), there is a Type-A ([47, 50, 58]) family HSM
gθ of operators analytic in

the domain | Im θ | < θ0, which is equal to (3.3) for θ ∈ R and s.t. HSM∗
gθ = HSM

gθ
and

HSM
gθ = URe θH

SM
gi Im θU

−1
Re θ . (3.4)

Indeed, using the decomposition HPF
g = HPF

p + Hf + IPF
g (see (2.9)–(2.10)), we write for

θ ∈ R

HSM
gθ = HSM

pθ ⊗ 1f + e−θ1p ⊗ Hf + I SM
gθ , (3.5)

where HSM
pθ := UpθH

PF
p U−1

pθ and I SM
gθ := UθI

PF
g U−1

θ . It is not hard to compute that HSM
pθ =

−e−2θ 1
2 � + Vg(e

θx), where

Vg(x) := V (x) + 2g2
∑

λ

∫
|k||fx,λ(k)|2d3k + g2

∑

λ

∫ |χλ(k)|2
|k| d3k (3.6)

with V given in (1.2). Furthermore, using (3.1) and the definitions of the interaction IPF
g ,

we see that I SM
gθ is obtained from IPF

g by the replacement a#(k) → e− 3θ
2 a#(k) and, in the

coupling functions only,

k → e−θ k and x → eθx. (3.7)

By Condition (DA), the family (3.5) is well defined for all θ satisfying | Im θ | < θ0 and has
all the properties mentioned after (3.3). Hence, for these θ , it gives the required analytic
continuation of (3.3). We call HSM

gθ with Im θ > 0 the complex deformation of HSM
g .

Recall that we define the resonances of HSM
g as the complex eigenvalues of HSM

gθ with
Im θ > 0. Thus to find resonances (and eigenvalues) of HSM

g we have to locate complex (and
real) eigenvalues of HSM

gθ for some θ with Im θ > 0.
In Sects. 5–8 we prove the following result

Theorem 3.1 Assume Conditions (V) and (DA) holds. Fix e
(p)

0 < ν < infσess(Hp) and let
g � ε

(p)
gap(ν). Then the operators HSM

gθ , with Im θ > 0, have eigenvalues7 εj , j ≤ j (ν), s.t.

εj = ε
(p)

j + O(g2) and εj are independent of θ . The essential spectrum of HSM
gθ , Im θ > 0,

is a subset of the set
⋃

j≤j (ν) Sj , where the sets Sj are given in (1.8).

Theorem 3.1, together with the discussion in paragraphs containing (1.9)–(1.6) implies The-
orems 1.1 and 1.2 (for the ground state part of Theorem 1.1 it contains unnecessary Condi-
tion (DA)).

Furthermore, one can show that the eigenvalues εj , j ≤ j (ν), have the following proper-
ties

(i) If the FGR condition is satisfied, then Im εj = −g2γj + O(g4), where γj are given by
the Fermi Golden Rule formula;

(ii) εj can be computed explicitly in terms of fast convergent expressions in the coupling
constant g.

7Remember that we assume that the particle eigenvalues are non-degenerate and consequently the second
subindex k in εj,k and Sj,k drops out.
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4 Generalized Particle-Field Hamiltonians

It is convenient to consider a more general class of Hamiltonians which contains, in partic-
ular, both, the generalized Pauli-Fierz and Nelson Hamiltonians and their complex dilation
transformations. (Recall that the Nelson Hamiltonian is defined in Appendix D.) We con-
sider Hamiltonians of the form

Hg = H0g + Ig, (4.1)

where g > 0 is a coupling constant, H0g := Hpg + Hf , with Hpg := −κ� + Vg(x), κ ∈
C, κ �= 0, and Ig := g

∑
1≤m+n≤2 Wm,n. We assume that Vg(x) is �-bounded with the relative

bound less than |κ|/2, more precisely, that it obeys the bound

‖Vgψ‖ ≤ |κ|
2

‖�ψ‖ + ‖ψ‖, (4.2)

uniformly in g ≤ 1, where we set the constant in front of the second term on the r.h.s. to 1.
This constant plays no role in our analysis. Moreover, we assume that the operators Wm,n

are of the form

Wm,n :=
∫

R3(m+n)

m+n∏

1

(
dkj

|kj |1/2

) m∏

1

a∗(kj )wm,n

[
k1, . . . , km+n

]m+n∏

m+1

a(kj ), (4.3)

where wm,n[k], k := (k1, . . . , km+n), the coupling functions, are operator-functions from
R

3(m+n) to bounded operators on the particle space Hp obeying

sup
g≤1

‖wm,n‖(0)
μ < ∞, (4.4)

for some μ ≥ 0 and δ0 > 0 (the latter parameter is not displayed, see the next equation; also
note that wm,n might depend on the coupling constant g). Here the norm ‖wm,n‖(0)

μ is defined
by

‖wm,n‖(0)
μ := sup

|δ|≤δ0

sup
k∈R3(m+n)

∥∥∥∥
e−δ〈x〉wm,n[k]eδ〈x〉〈p〉−(2−m−n)

[min(〈x〉m+n
∏m+n

1 (|kj |1/2),1)]μ
∥∥∥∥

part

. (4.5)

Here ‖ · ‖part is the operator norm on the particle Hilbert space Hp . We observe that for g

sufficiently small

D(Hg) = D(H0) ⊂ D(Ig).

We denote by GHμ the class of (generalized particle-field) Hamiltonians satisfying the
restrictions (4.1)–(4.5). We also denote by GHmn

μ the class of operators of the form (4.3)–
(4.5).

Clearly, both, the generalized Pauli-Fierz and Nelson, Hamiltonians belong to GHμ with
μ = 1/2 for the generalized Pauli-Fierz Hamiltonian and μ > 0 for the Nelson Hamiltonian
and with κ = 1/2. Indeed, for the Nelson model, (D.1)–(D.5), Vg = V obeys (4.2) and wm,n

are 0 for m + n = 2 and multiplication operators by the bounded functions κ(k)e−ikx and
κ(k)eikx for m + n = 1. For the QED case (the generalized Pauli-Fierz Hamiltonian, (2.4))
Vg is given by (3.6) and Ig := p · A1(x) + 1

2g : A1(x)2 : +G(x), where the operator G(x)
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is defined in (2.5).8 From these expressions we see that Vg satisfies (4.2) and wm,n obey the
conditions formulated above.

Dilation deformed generalized Pauli-Fierz and Nelson Hamiltonian also fit this frame-
work. Let HSM

gθ be a complex deformation of the QED Hamiltonian HSM
g , i.e. the dila-

tion transformation of the generalized Pauli-Fierz Hamiltonian HPF
g . Then the operator

Hg := eθHSM
gθ satisfies the restrictions imposed above with μ = 1/2 and κ = e−Re θ /2. For

the Nelson model we have and μ > 0.

5 Elimination of Particle and High-Photon Energy Degrees of Freedom

In this section we consider the operator families Hg − λ, where the operator Hg = Hg0 +
Ig ∈ GHμ (see Sect. 4), and map them into families of operators acting on the Fock space
only (elimination of the particle degrees of freedom). We will study properties of the latter
operators in Sects. 7 and 8 after we introduce appropriate Banach spaces in Sect. 6.

Fix j ≥ 0 and consider an eigenvalue λj ∈ σd(Hpg) and define

δj := dist(λj , (σ (Hpg)/{λj }) + [0,∞)). (5.1)

We assume infg≥0 δj > 09 and we define the set

Qj :=
{
λ ∈ C

∣∣∣ Re(λ − λj ) ≤ 1

3
δj and | Im(λ − λj )| ≤ 1

3
δj

}
. (5.2)

Let Ppj be the orthogonal projection onto the eigenspace of Hpg corresponding to λj and,
as usual, P pj = 1 − Ppj . We define Hδ

pg := e−ϕHpge
ϕ and P δ

pj := e−ϕPpj e
ϕ with ϕ = δ〈x〉.

We use the following parameter to measure the size of the resolvent of Hδ
pg :

κ−1
j := max

(
sup

0≤δ≤δ

sup
λ∈Qj

‖(Hδ
pg − λ)−1P

δ

pj‖, δ−1
j

)
, (5.3)

for δ > 0 sufficiently small. Note that if the operator Hpg is normal, as in the case of the
problem of the ground state, where Hpg is self-adjoint, then κj can be easily estimated for
δ0 sufficiently small. If the operator Hpg is not normal, then getting an explicit upper bound
on its resolvent requires some work. This will be done in the proof of Theorem 3.1 given in
Sect. 9.

Our goal now is to define the renormalization map on the class generalized particle-field
Hamiltonians GHμ. This map is a composition of three maps which we introduce now. First
of these is the smooth Feshbach-Schur map (SFM),10 or decimation, map, Fπ, which is

8Here the symbol : W : stands for the standard Wick ordering of an operator W on our Fock space, i.e. in the
expression for W in terms of the creation and annihilation operators, the creation operators are moved to the
left and the annihilation ones, to the right.
9If infg≥0 δj = 0 as it happens in the case when λj |g=0 are degenerate, then in (5.1) we have to group the
eigenvalues into clusters with the pairwise distances of order O(1).
10In [5, 11, 12] this map is called the Feshbach map. As was pointed out to us by F. Klopp and B. Simon, the
invertibility procedure at the heart of this map was introduced by I. Schur in 1917; it appeared implicitly in an
independent work of H. Feshbach on the theory of nuclear reactions, in 1958, see [29] for further extensions
and historical remarks.
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defined as follows. We introduce a pair of almost projections

π ≡ πj ≡ π[Hf ] := Ppj ⊗ χHf ≤ρ (5.4)

and π ≡ π[Hf ] which form a partition of unity π2 + π2 = 1. Note that π and π commute
with H0g introduced in Sect. 4. Next, for Hg = H0g + Ig ∈ GHμ, we define

Hπ̄ := H0g + π̄Igπ̄ . (5.5)

Finally, on the operators Hg − λ s.t. Hg = H0g + Ig ∈ GHμ and

Hπ̄ − λ is (bounded) invertible on Ran π̄ , (5.6)

we define smooth Feshbach-Schur map, Fπ, as

Fπ(Hg − λ) := H0g − λ + πIgπ − πIgπ̄(Hπ̄ − λ)−1π̄Igπ. (5.7)

Observe that the last two operators on the r.h.s. are bounded since, for any operator Ig as
described in Sect. 4,

Igπ and πIg extend to bounded operators on H.

Properties of the smooth Feshbach-Schur maps, used in this paper, are described in Appen-
dix A. For more details see [5, 29].

Next, we introduce the scaling transformation Sρ : B[H] → B[H], which acts on the
particle component of H := Hp ⊗ Hf by identity and on the field one, by

Sρ(1) := 1, Sρ(a
#(k)) := ρ−d/2a#(ρ−1k), (5.8)

where a#(k) is either a(k) or a∗(k) and k ∈ R
3.

Now, on Hamiltonians acting on H := Hp ⊗ Hf which are in the domain of the decima-
tion map Fπ we define the renormalization map Rρj as

Rρj = ρ−1Sρ ◦ Fπ, (5.9)

where recall π ≡ πj . The parameter ρ here is the same as the one in (5.4). It gives a photon
energy scale and it is restricted below.

To simplify the notation we assume that the eigenvalue λj of the operator Hpg is simple
(otherwise we would have to deal with matrix-valued operators on Hf ). We have

Theorem 5.1 Let Hg be a Hamiltonian of the class GHμ defined in Sect. 4 with μ ≥ 0. We
assume that infg≥0 δj > 0. Then for g � ρ ≤ κj , ρ ≥ δj /2 and λ ∈ Qj

Hg − λ ∈ D(Rρj ). (5.10)

Furthermore, Rρj (Hg −λ) = Ppj ⊗Hλj + (H0g −λ)(P̄pj ⊗1) where the family of operators
Hλj , acting on F , is s.t. Hλj − Hf is bounded and analytic in λ ∈ Qj .

A proof of Theorem 5.1 is similar to that of related results of [11–13]. We begin with
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Proposition 5.2 Let g � ρ ≤ κj , ρ ≥ δj /2 and λ ∈ Qj . Then the operators Hπ − λ are
invertible on Ranπ and we have the estimate

‖π(Hπ − λ)−1π‖ ≤ 4ρ−1. (5.11)

Proof First we show that for λ ∈ Qj the operator H0g − λ is invertible on Ranπ and the
following estimate holds for n = 0,1

‖(|p|2 + Hf + 1
)n

R0(λ)‖ ≤ Cρ−1 (5.12)

where R0(λ) := (H0g − λ)−1π . If the operator Hpg is self-adjoint then the estimates above
are straightforward. In the non-self-adjoint case we proceed as follows.

Write π = Ppj ⊗χHf ≥ρ +P pj ⊗1, where, as usual, P pj = 1−Ppj . On Ran(Ppj ⊗χHf ≥ρ)

we have that H0g = λj + Hf and therefore, for λ ∈ Qj ,

Re(H0g − λ) = Re(λj − λ) + Hf ≥ −1

3
δj + ρ ≥ 1

3
ρ.

Hence the operator H0g − λ is invertible on Ran(Ppj ⊗ χHf ≥ρ) for λ ∈ Qj and

‖(H0g − λ)−1(Ppj ⊗ χHf ≥ρ)‖ ≤ 3ρ−1. (5.13)

Next, σ(H0g|Ran(Ppj ⊗1)) = σ(Hpg|RanPpj
)+σ(Hf ) = (σ (Hpg)/{λj })+ R̄

+. Now, by the
definition of Qj we have infs≥0 dist(λj − s,Qj ) ≤ δj /2. This and the definition of δj give

dist(σ (H0g|Ran(Ppj ⊗1)),Qj ) ≥ δj /2. (5.14)

Therefore, for λ ∈ Qj, the operator H0g −λ is invertible on Ran(P pj ⊗1). Since the operator
(H0g − λ)−1(P pj ⊗ 1) is analytic in a neighborhood of Qj we have that supλ∈Qj

‖(H0g −
λ)−1(P pj ⊗ 1)‖ < ∞.

We claim that

sup
λ∈Qj

‖(H0g − λ)−1(P pj ⊗ 1)‖ ≤ κ−1
j (5.15)

where κj is defined in (5.3). Indeed, since the operator Hf is self-adjoint with the known
spectrum, [0,∞), and since Qj = Qj − [0,∞), we can write, using the spectral theory,

l.h.s. of (5.15) = sup
λ∈Qj

‖(Hpg − λ)−1P pj‖. (5.16)

Now, our claim follows from the definition (5.3) of κj .
Since ρ ≤ κj , the inequalities (5.13) and (5.15) imply

‖R0(λ)‖ ≤ 4ρ−1 (5.17)

which implies (5.12) with n = 0 and C = 4.
The estimate (5.17) and the relation H0gR0(λ) = Ranπ + λR0(λ) imply the inequality

‖H0gR0(λ)‖ ≤ 2 + 4|e(p)

0 |/ρ. Finally, since by (4.2), ‖|p|2ψ‖ ≤ 2‖H0gψ‖+ 2‖ψ‖, we have
(5.12) with n = 1.

The inequality (5.12) implies the estimates
∥∥〈p〉2−n(Hf + 1)n/2(H0g − λ)−1π̄

∥∥≤ Cρ−1, (5.18)
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for n = 1,2.
Now, we claim that

∥∥Ig(H0g − λ)−1π̄
∥∥≤ Cgρ−1. (5.19)

Indeed, let f (k) be an operator-valued function on Hp . Then we have the following standard
estimates

∥∥a(f )ψ
∥∥≤

(∫ ‖f (k)‖2
part

|k| d3k

) 1
2 ∥∥H 1/2

f ψ
∥∥ (5.20)

(cf. (6.10) with m + n = 1) and

∥∥a∗(f )ψ
∥∥2 =

∫
‖f (k)‖2

partd
3k
∥∥ψ
∥∥2 + ∥∥a(f )ψ

∥∥2
. (5.21)

Equation (5.19) follows from the estimates (5.18), (5.20) and (5.21), the pull-through for-
mula

a(k)f [Hf ] = f [Hf + |k|]a(k), (5.22)

and from the conditions on the operator Ig imposed in Sect. 4. For instance, for the term
W0,1 we have

∥∥W1,0ψ
∥∥ ≤

∫

|k|≤1

∥∥w1,0(k)〈p〉−1a∗(k)〈p〉ψ∥∥ d3k√|k|

≤
(∫

|k|≤1

‖w1,0(k)〈p〉−1‖2
part

|k| d3k

) 1
2 ∥∥〈p〉ψ∥∥

+
(∫

|k|≤1

‖w1,0(k)〈p〉−1‖2
part

|k|2 d3k

) 1
2 ∥∥H 1/2

f 〈p〉ψ∥∥

≤ ‖w1,0‖(0)
μ

∥∥〈p〉(Hf + 1)1/2ψ
∥∥ (5.23)

for any μ > −1/2. This together with (5.12) implies ‖W1,0(H0g −λ)−1π̄‖ ≤ C‖w1,0‖(0)
μ ρ−1.

Now, the term W0,2 is estimated as follows:

∥∥W0,2ψ
∥∥ ≤

∫

|k1|≤1

∫

|k2|≤1

∥∥w0,2(k1, k2)a(k1)a(k2)ψ
∥∥ d3k1√|k1|

d3k2√|k2|

≤
∫

|k1|≤1

(∫

|k2|≤1

‖w0,2(k1, k2)‖2
part

|k2| d3k2

) 1
2 ∥∥H 1/2

f a(k1)ψ
∥∥ d3k1√|k1|

≤
∫

|k1|≤1

(∫

|k2|≤1

‖w0,2(k1, k2)‖2
part

|k2| d3k2

) 1
2 ∥∥(Hf + |k1|)1/2a(k1)ψ

∥∥ d3k1√|k1|

=
∫

|k1|≤1

(∫

|k2|≤1

‖w0,2(k1, k2)‖2
part

|k2| d3k2

) 1
2 ∥∥a(k1)H

1/2
f ψ

∥∥ d3k1√|k1|

≤
(∫

|k1|≤1

∫

|k2|≤1

‖w0,2(k1, k2)‖2
part

|k1||k2| d3k1d
3k2

) 1
2 ∥∥Hf ψ

∥∥

≤ ‖w0,2‖(0)
μ

∥∥Hf ψ
∥∥ (5.24)
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for any μ > −1.
Equation (5.19) implies that the series

∞∑

n=0

(H0g − λ)−1
(
πIgR0(λ)

)n
(5.25)

converges absolutely on the invariant subspace Ranπ , and is equal to (Hτ0π −λ)−1, provided
g � ρ. Estimating this series using (5.19) gives the desired estimate (5.11). �

Proof of Theorem 5.1 The last proposition together with the fact that the operators πIg and
Igπ are bounded yields (5.6). The second part of the theorem follows from the definition of
the Feshbach-Schur map, (5.7), the proposition and the Neumann series argument. �

Note that K := Rρj (Hg − λ) |Ran(P̄pj ⊗1)= (H0g − λ) |Ran(P̄pj ⊗1) and therefore σ(K) =
σ(Hpg)/{λj } + [0,∞) − λ. Hence for any λ ∈ Qj we have

min{|μ − λ| | μ ∈ (σ (Hpg)/{λj }) + [0,∞)} ≥ δj − |λ − λj | ≥ 1

2
δj . (5.26)

Therefore 0 /∈ σ(K). This, the relation σ(Rρj (Hg −λ)) = σ(Hλj )∪σ(K) and Theorem A.1
of Appendix A imply

Corollary 5.3 Let λ ∈ Qj . Then λ ∈ σ(Hg) if and only if 0 ∈ σ(Hλj ). Similar statement
holds also for point and essential spectra.

This corollary shows that to describe the spectrum of the operator Hg in the domain Qj it
suffices to describe the spectrum of the operators Hλj which act on the smaller space F . In
the next section we introduce a convenient Banach space which contains the operators Hλj

for λ ∈ Qj .

Furthermore to prove bounds on resolvent in terms of bounds on H−1
λj one uses the rela-

tion

Rρj (Hg − λ)−1 = H−1
λj (Ppj ⊗ 1) + (H0g − λ)−1(P̄pj ⊗ 1). (5.27)

6 A Banach Space of Hamiltonians

We construct a Banach space of Hamiltonians on which the renormalization transformation
will be defined. In order not to complicate notation unnecessarily we will think about the
creation- and annihilation operators used below as scalar operators, neglecting the helic-
ity of photons. We explain at the end of Appendix C how to reinterpret the corresponding
expression for the photon creation- and annihilation operators.

Let Br
1 denote the Cartesian product of r unit balls in R

3, I := [0,1] and m,n ≥ 0. Given
functions wm,n : I × Bm+n

1 → C,m + n > 0, we consider monomials, Wm,n ≡ Wm,n[wm,n],
in the creation and annihilation operators defined as follows:

Wm,n[wm,n] :=
∫

Bm+n
1

dk(m,n)

|k(m,n)|1/2
a∗(k(m))wm,n

[
Hf ; k(m,n)

]
a(k̃(n)). (6.1)
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Furthermore for w0,0 : [0,∞) → C we define using the operator calculus W0,0 := w0,0[Hf ]
( m = n = 0). Here we are using the notation

k(m) := (k1, . . . , km) ∈ R
3m, a#(k(m)) :=∏m

i=1 a#(ki), (6.2)

k(m,n) := (k(m), k̃(n)), dk(m,n) :=∏m

i=1 d3ki

∏n

i=1 d3k̃i , (6.3)

|k(m,n)| := |k(m)| · |k̃(n)|, |k(m)| := |k1| · · · |km|, (6.4)

where a#(k) stand for a(k) either or a∗(k). The notation Wm,n[wm,n] stresses the dependence
of Wm,n on wm,n. Note that W0,0[w0,0] := w0,0[Hf ].

We assume that, for every m and n with m + n > 0 and for s ≥ 1, the function
wm,n[r, , k(m,n)] is s times continuously differentiable in r ∈ I , for almost every k(m,n) ∈
Bm+n

1 , and weakly differentiable in k(m,n) ∈ Bm+n
1 , for almost every r in I . As a function of

k(m,n), it is totally symmetric w.r.t. the variables k(m) = (k1, . . . , km) and k̃(n) = (k̃1, . . . , k̃n)

and obeys the norm bound

‖wm,n‖μ,s :=
s∑

n=0

‖∂n
r wm,n‖μ < ∞, (6.5)

where μ ≥ 0, s ≥ 0 and

‖wm,n‖μ := max
j

sup
r∈I,k(m,n)∈Bm+n

1

∣∣|kj |−μwm,n[r; k(m,n)]
∣∣. (6.6)

Here and in what follows kj ∈ R
3 is the j -th 3-vector in k(m,n) over which we take the supre-

mum. For m + n = 0 the variable r ranges over [0,∞) and we assume that the following
norm is finite:

‖w0,0‖μ,s := |w0,0(0)| +
∑

1≤n≤s

sup
r∈[0,∞)

|∂n
r w0,0(r)|. (6.7)

(This norm is independent of μ, but we keep this index for notational convenience.) The
Banach space of functions wm,n of this type is denoted by W μ,s

m,n.
We fix three numbers μ ≥ 0, 0 < ξ < 1 and s ≥ 1 and define the Banach space

W μ,s ≡ W μ,s

ξ :=
⊕

m+n≥0

W μ,s
m,n, (6.8)

with the norm
∥∥w
∥∥

μ,s,ξ
:=

∑

m+n≥0

ξ−(m+n)‖wm,n‖μ,s < ∞. (6.9)

Clearly, W μ′,s′
ξ ′ ⊂ W μ,s

ξ if μ′ ≥ μ, s ′ ≥ s and ξ ′ ≤ ξ .
Let χ1(r) ≡ χr≤1 be a smooth cut-off function s.t. χ1 = 1 for r ≤ 9/10,= 0 for r ≥ 1

and 0 ≤ χ1(r) ≤ 1 and sup |∂n
r χ1(r)| ≤ 30 ∀r and for n = 1,2. We denote χρ(r) ≡ χr≤ρ :=

χ1(r/ρ) ≡ χr/ρ≤1 and χρ ≡ χHf ≤ρ .
The following basic bound, proven in [2], links the norm defined in (6.6) to the operator

norm on B[F ].
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Theorem 6.1 Fix m,n ∈ N0 such that m+n ≥ 1. Suppose that wm,n ∈ W μ,1
m,n, and let Wm,n ≡

Wm,n[wm,n] be as defined in (6.1). Then for all λ > 0

∥∥(Hf + λ)−m/2Wm,n(Hf + λ)−n/2
∥∥≤ ‖wm,n‖0, (6.10)

and therefore

∥∥χρWm,nχρ

∥∥≤ ρ(m+n)(1+μ)

√
m!n! ‖wm,n‖0, (6.11)

where ‖ · ‖ denotes the operator norm on B[F ].

Theorem 6.1 says that the finiteness of ‖wm,n‖0 insures that Wm,n defines a bounded
operator on B[F ].

With a sequence w := (wm,n)m+n≥0 in W μ,s we associate an operator by setting

H(w ) := W0,0[w ] +
∑

m+n≥1

χ1Wm,n[w ]χ1 (6.12)

where we write Wm,n[w ] := Wm,n[wm,n]. The r.h.s. of (6.12) are said to be in generalized
normal (or Wick-ordered) form of the operator H(w ). Theorem 6.1 shows that the series in
(6.12) converges in the operator norm and obeys the estimate

∥∥H(w ) − W0,0(w )
∥∥w1

∥∥
μ,0,ξ

, (6.13)

for arbitrary w = (wm,n)m+n≥0 ∈ W μ,0 and any μ > −1/2. Here w1 = (wm,n)m+n≥1. Hence
the linear map

H : w → H(w ) (6.14)

takes W μ,0 into the set of closed operators on Fock space F . The following result is proven
in [2].

Theorem 6.2 For any μ ≥ 0 and 0 < ξ < 1, the map H : w → H(w ), given in (6.12), is
injective.

Furthermore, we define the Banach space

W μ,s

1 :=
⊕

m+n≥1

W μ,s
m,n, (6.15)

to be the set of all sequences w1 := (wm,n)m+n≥1 obeying

‖w1‖μ,s,ξ :=
∑

m+n≥1

ξ−(m+n)‖wm,n‖μ,s < ∞. (6.16)

We define the spaces W μ,s
op := H(W μ,s), W μ,s

1,op := H(W μ,s

1 ) and W μ,s
mn,op := H(W μ,s

mn ).
Sometimes we display the parameter ξ as in W μ,s

op,ξ := H(W μ,s

ξ ). Theorem 6.2 implies that
W μ,s

op := H(W μ,s) is a Banach space under the norm ‖H(w )‖μ,s,ξ := ‖w ‖μ,s,ξ . Similarly,
the spaces W μ,s

1,op and W μ,s
mn,op are also Banach spaces in the corresponding norms.

In this paper we need and consider only the case s = 1. However, we keep the more
general notation for convenience of references elsewhere.
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7 The operator Rρj (Hg − λ)

In this section we give a detailed description of the family of operators Hλj := Rρj (Hg −
λ)|Ran(Ppj ⊗1) (see Theorem 5.1). Here, recall, that Ppj denotes the projection on the particle
eigenspace corresponding to the eigenvalue λj . We define the following polydisc in W μ,s

op :

Dμ,s(α,β, γ ) :=
{
H(w ) ∈ W μ,s

op

∣∣∣|w0,0(0)| ≤ α,

sup
r∈[0,∞)

|∂rw0,0(r) − 1| ≤ β, ‖w1‖μ,s,ξ ≤ γ
}
, (7.1)

for α,β, γ > 0. Recall that w1 := (wm,n)m+n≥1. In what follows we fix the parameter ξ in
(7.1) as ξ = 1/4.

Theorem 7.1 Let Hg be a Hamiltonian of the class GHμ defined in Sect. 4 with μ ≥ 0. We
assume that δj > 0. Then for g � ρ ≤ min(κj ,1/2) and λ ∈ Qj ,

Hλj − ρ−1(λj − λ) ∈ Dμ,s(α,β, γ ), (7.2)

where α = O(g2ρμ−2), β = O(g2ρμ−1), γ = O(gρμ).

Note that if ψ
(p)

j is an eigenfunction of Hpg with the eigenvalue λj and �j := ψ
(p)

j ⊗ �,
then we have

λj − λ = 〈Hg − λ〉�j
.

The proof of Theorem 7.1 follows the lines of the proof of Theorem IV.3 of [26]. It is
similar to the proofs of related results of [11–13]. However, there are a few differences here.
The main ones are that we have to deal with unbounded interactions and, more importantly,
with momentum-anisotropic spaces. Since the proof of Theorem 7.1 is technically rather
involved, it is delegated to an Appendix B.

8 Spectrum of Hg

In this section we describe the spectrum of the operator Hg ∈ GHμ defined in Section 4.
We begin with some definitions. Recall that D(λ, r) := {z ∈ C||z − λ| ≤ r}, a disc in the
complex plane. Denote D := Dμ,1(α,β, γ ) with α,β, γ � 1 and let Ds := Dμ,1(0, β, γ )

(the subindex s stands for ‘stable’, not to be confused with the smoothness index s which in
this section is taken to be 1). For H ∈ D we denote Hu := 〈H 〉� and Hs := H − 〈H 〉�1 (the
unstable- and stable-central-space components of H , respectively). Note that if H ∈ D, then
Hs ∈ Ds .

Recall that a complex function f from an open set D in a complex Banach space B is said
to be analytic iff ∀H ∈ D and ∀ξ ∈ B, f (H +τξ) is analytic in the complex variable τ for |τ |
sufficiently small (see [15]). (One can show that f is analytic iff it is Gâteaux-differentiable
([15, 37]). A stronger notion of analyticity, requiring in addition that f is locally bounded, is
used in [37].) Furthermore, if f is analytic in D and g is an analytic vector-function from an
open set � in C into D, then the composite function f ◦ g is analytic on �. In what follows
B is the space of Hf -bounded operators on F .

Our analysis uses the following result from [26]:
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Theorem 8.1 For α,β and γ sufficiently small there is an analytic map e : Ds → D(0,4α)

s.t. e(H) ∈ R for H = H ∗ and for any H ∈ Ds , σ(H) ⊂ e(H) + S, where

S :=
{
w ∈ C

∣∣∣ | Imw| ≤ 1

3
Rew

}
. (8.1)

Moreover, the number e(H) is an eigenvalue of the operator H .

Let Hg be in the class GHμ defined in Sect. 4 with μ > 0 and let Hzj be the operator
obtained from Hg according to Theorem 5.1. By Corollary 5.3, for z ∈ Qj, we have that z ∈
σ(Hg) if and only if 0 ∈ σ(Hzj ) and similarly for point and essential spectra. By Theorem
7.1, ∀z ∈ Qj,Hzj ∈ Dμ,1(α,β, δ) with α = O(g2ρ−1), β = O(g2) and γ = O(gρμ), where
ρ satisfies g � ρ ≤ min(κj ,1/2). Since by our assumption g � 1, we can choose ρ so that

g2ρ−1, gρμ � 1. (8.2)

In this case the condition of Theorem 8.1 is satisfied for Hzjs ∈ Ds . Therefore it is in the
domain of the map e : Ds → C described in Theorem 8.1 above and we can define

ϕj (z) := Ej(z) + e(Hzjs), (8.3)

where Ej(z) := Hzju = 〈�,Hzj�〉 and z ∈ Qj . Let �ρ be the unitary dilatation on F defined
by

�ρ = Uf (− lnρ) (8.4)

where Uf (− lnρ) is defined in Sect. 3. Our goal is to prove the following

Theorem 8.2 Let the Hamiltonian Hg be in the class GHμ defined in Sect. 4 with μ > 0
and let infg≥0 δj > 0. Then for g � κj ,

(i) The equation ϕj (ε) = 0 has a unique solution ej ∈ Qj and this solution obeys the
estimate |ej − λj | ≤ 15α;

(ii) ej is an eigenvalue of Hg and

σ(Hg) ∩ Qj ⊂
{
z ∈ Qj

∣∣∣
1

2
Re(z − ej ) ≥ | Im(z − ej )|

}
; (8.5)

(iii) If ψj is an eigenfunction of the operator Hej j corresponding to the eigenvalue 0, then
the vector

�j := Qπ

(
Hg − ej

)
�∗

ρψj �= 0, (8.6)

where π and Qπ(H) are defined in (5.4) and (A.1), respectively, is an eigenfunction of
the operator Hg corresponding to the eigenvalue ej .

Proof In this proof we omit the subindex j . (i) Since e : Ds → D(0,4α) is an analytic map,
z → Hzs is an analytic vector-function and z → E(z) is an analytic function on Qint , by
Theorem 5.1, we conclude that the function ϕ is analytic on Qint . Here Qint is the interior
of the set Q.

Furthermore, the definitions (8.3) and �0E(z) := E(z) − ρ−1(λ − z) (remember that in
this proof λ = λj ) imply that ϕ(λ) = �0E(λ) + e(Hλs).
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We have, by Theorem 7.1, that |�0E(λ)| ≤ α. Hence |ϕ(λ)| ≤ 5α. Furthermore since Q

is inside a square in C of side δ/3, we have, by the Cauchy formula, that

|∂m
z �0E(z)| ≤ α(3/δ)m for m = 0,1 (8.7)

(remember that in this proof δ = δj ). Similarly we have:

|∂ze(H(z)s)| ≤ 4α(3/δ)−1. (8.8)

The last two inequalities and the equation �0E(z) := E(z) − ρ−1(λ − z) give

|∂zϕ(z) + 1| ≤ 15α/δ. (8.9)

Hence by inverse function theorem, for α sufficiently small the equation ϕ(z) = 0 has a
unique solution, e, in Q and this solution satisfies the bound |e − λ| ≤ 15α.

(ii) By Theorem 8.1, ϕ(z) is an eigenvalue of the operator Hz = E(z) + Hzs . Hence 0
is an eigenvalue of the operator He. By Corollary 5.3, z is an eigenvalue of Hg ↔ 0 is an
eigenvalue of Hz. Hence e is an eigenvalue of the operator Hg .

Next, by Corollary 5.3, we have for any z ∈ Q

z ∈ σ(Hg) ↔ 0 ∈ σ(Hz). (8.10)

Due to Theorem 8.1 we have that σ(Hz) = E(z)+σ(Hzs) ⊂ E(z)+ e(Hzs)+S = ϕ(z)+S,
where the set S is defined in (8.1). This together with (8.10) gives z ∈ σ(Hg) ∩ Q ↔ ϕ(z) ∈
−S or

σ(Hg) ∩ Q = ϕ−1(−S). (8.11)

Now the second part of the proof will follow if we show that ϕ−1(−S) is a subset of the
r.h.s. of (8.5). Denote μ := z − e and let

| Imμ| > 1

2
|Reμ|. (8.12)

Let w := −ϕ(z). Using that ϕ(e) = 0 and the integral of derivative formula we find

ϕ(z) = (z − e)g(z) (8.13)

with g(z) := ∫ 1
0 ϕ(e + s(z − e))ds. This gives

| Imw| = |Reg Imμ + Img Reμ|. (8.14)

Now, the definitions (8.3) and �0E(z) := E(z) − ρ−1(λ − z) (remember that in this proof
λ = λj ) imply that

∂zϕ(z) = −1 + ∂z�0E(z) + ∂ze(Hzs). (8.15)

This, the fact that z̄ := e + s(z − e) ∈ Q and (8.7) and (8.8) give

|Reg(z)| ≥ 1 − O(α) and | Img(z)| ≤ O(α). (8.16)

Relations (8.14) and (8.16) imply the estimate

| Imw| ≥ (1 − O(α))| Imμ| − O(α)|Reμ|
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which together with (8.12) gives

| Imw| ≥ 1

4
(1 − O(α))| Imμ| + 3

8
(1 − O(α))|Reμ|. (8.17)

Similarly, we obtain

|Rew| = |Reg Reμ − Img Imμ|
≤ (1 + O(α))|Reμ| + O(α)| Imμ|. (8.18)

The last two relations imply | Imw| > 1
3 |Rew| and therefore w �∈ S or what is the same

z �∈ ϕ−1(−S).
Now let Reμ < 0. Then (8.15)–(8.16) imply that Rew = −Reg Reμ + Img Imμ =

(−1 + O(α))|Reμ| + O(α Imμ). Thus, Rew = (−1 + O(α))|Reμ|, provided | Imμ| ≤
|Reμ|. Hence also in this case we have z �∈ ϕ−1(−S). Thus we conclude that ϕ−1(−S) is a
subset of the set on the r.h.s. of (8.5), as claimed.

(iii) Finally, the last part of the theorem follows from Theorem A.1(iii) of Appendix A.
Theorem 8.2 is proven. �

9 Proof of Theorems 1.1 and 1.2

We begin with the proof of existence and properties of the ground state. Note that the gener-
alized Pauli-Fierz Hamiltonian HPF

g , given in (2.9), is of the class GHμ,μ > 0 (see Sect. 4)
and is self-adjoint. The operator HPF

g , g � κ0, clearly satisfies the conditions of Theorem
8.2 with j = 0. Hence it has a ground state for g � κ0 with all the properties stated in The-
orem 8.2. Moreover, the particle Hamiltonian HPF

p entering HPF
g is self-adjoint which im-

plies that the constant κ0, defined in (5.3), is κ0 = dist(σ (HPF
p |RanPp0

),Qj ) ≥ δ0/2. Here,

recall, δ0 := dist(λ0, σ (HPF
p )/{λ0}), where λ0 is the smallest eigenvalues of the operator

HPF
p . This implies the existence and properties of the ground state for HPF

g , g � δ0.
Now, HPF

p = Hp + O(g2) (see (2.10)). Hence, since we assumed that the eigenvalues
of Hp are non-degenerate, the eigenvalues λj of the operator HPF

p labeled in order of their

increase satisfy λj = ε
(p)

j +O(g2), where, recall, ε
(p)

j are the eigenvalues of the operator Hp

given in (1.2). Therefore δ0 = ε
(p)
gap(ε

(p)

0 ) + O(g2), where, recall,

ε(p)
gap(ν) := min{|ε(p)

i − ε
(p)

j | | i �= j, ε
(p)

i , ε
(p)

j ≤ ν}.

Consequently, g � ε
(p)
gap(ε

(p)

0 ) implies g � κ0 and therefore, since HPF
g is unitary equivalent

to HSM
g , this proves the part of the statement of Theorem 1.1 concerning the ground state.

Note that the energy of the found ground state solves the equation ϕ0(ε) = 0 (see (8.3)
for the definition of ϕj (ε)).

Now we prove Theorem 3.1 which implies the part of the statement of Theorem 1.1 con-
cerning the excited states and Theorem 1.2. Let Hg := eθHPF

gθ where HPF
gθ is the complex

deformation of the Hamiltonian HPF
g , defined in Sect. 3. The Hamiltonian Hg belongs to

the class GHμ with μ > 0. We will assume 0 < Im θ ≤ min(θ0,π/4), where θ0 is defined in
Condition (DA) of Sect. 1, Re θ = 0 and g � min(κj , ε

(p)
gap(ν)), where κj is defined in (5.3).

Let HPF
p and HPF

pθ be the particle Hamiltonians entering HPF
g and HPF

gθ , respectively.
We show that the condition infg≥0 δj > 0 of Sect. 5 is satisfied in the present case, provided
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j ≤ j (ν), with ν < infσess(Hp), and g � ε
(p)
gap(ν). Here, recall, j (ν) := max{j : ε

(p)

j ≤ ν}
and ε

(p)
gap(ν) is defined above. To do this we note first that, since HPF

p = Hp + O(g2), we
have ν < infσess(H

PF
p ) for g sufficiently small. Furthermore, since we have chosen Re θ = 0

and since the eigenvalues λj of the operator Hpg := eθHPF
pθ satisfy λj = eθεPF

j , where εPF
j

are eigenvalues of the operator HPF
pθ , we have that

δj = dist(εPF
j , (σ (HPF

pθ )/{εPF
j }) + e−θ

R+).

Recall the expression HPF
pθ = − 1

2 e−2θ�+Vgθ and recall that Vgθ = Vθ +O(g2) and that Vθ

is �-compact, by Condition (V), which implies the �-compactness of V in the one particle
case, and Condition (DA), which implies the �-compactness of Vθ in the one particle case.
Then by the Balslev-Combes-Simon theorem, we have that HPF

pθ has no complex eigenval-
ues in the domain {Re z ≤ ν} and therefore its eigenvalues εPF

j , j ≤ j (ν), coincide with the
eigenvalues of the operator HPF

p which are ≤ ν. Hence we have that

δj = min(dist(εPF
j , σ (HPF

p )/{εPF
j }), (εPF

j−1 − εPF
j ) tan(Im θ)).

Since the eigenvalues ε
(p)

j are simple, we have that εPF
j = ε

(p)

j + O(g2) and therefore
infg≥0 δj > 0.

Thus, for any j ≤ j (ν), the operator Hg(:= eθHPF
gθ ), g � min(κj , ε

(p)
gap(ν)), satisfies the

conditions of Theorem 8.2. This implies that HPF
gθ , g � min(κj , ε

(p)
gap(ν)), has an eigenvalue

εj ∈ e−θQj and that the spectrum of HPF
gθ near εPF

j = e−θλj is of the form

σ(HPF
gθ ) ∩ e−θQj ⊂

{
z ∈ e−θQj

∣∣∣
1

2
Re(eθ (z − εj )) ≥ | Im(eθ (z − εj ))|

}
. (9.1)

Here Qj is given in (5.2) and can be rewritten in the present special case as

Qj :=
{
z ∈ C

∣∣∣ Re(eθ (z − εPF
j )) ≤ 1

3
δj and | Im(eθ (z − εPF

j ))| ≤ 1

3
δj

}
. (9.2)

Moreover, eθεj is the unique solution to the equation ϕj (ε) = 0 and εj → εPF
j as g → 0.

Let ϕj (ε, θ) ≡ ϕj (ε) be the function constructed in (8.3) for the operator Hg := eθHPF
gθ .

It is not hard to see that ϕj (ε, θ) is analytic in θ . Since by Theorem 8.2 eθεj is a unique
solution to the equation ϕj (ε, θ) = 0 we conclude that εj is analytic in θ (in the degenerate
eigenvalue case, a fractional power of θ ). On the other hand, by (3.4), εj is independent of
Re θ . Hence it is independent of θ .

The eigenvalue ε0 is always real and therefore is the eigenvalue also of HPF
g . This is

the ground state energy of HPF
g . For j > 0 the eigenvalue εj can be either complex or real,

i.e. either a resonance or an eigenvalue of HPF
g . (If the (FGR) condition is satisfied then

Im εj < 0 for j �= 0 and, in fact, Im εj = −γjg
2 + O(g4) for some γj > 0 independent of

g, see [13].) (In the degenerate case, the total multiplicity of the resonances and eigenvalues
arising from εPF

j is equal to the multiplicity of εPF
j .)

Thus, since the r.h.s. of (9.1) ⊂ Sj ≡ Sj,k defined in (1.8), we have proven all the state-
ments of Theorem 3.1, but under the stronger assumption g � min(κj , ε

(p)
gap(ν)). Now we

relax this assumption.
Define δ#

j := dist(εPF
j , σ (HPF

p )/{εPF
j }). The following proposition states that the restric-

tions g � δ#
j and | Im θ | � δ#

j imply the restriction g � κj . Recall that κj and δj are defined
in (5.3) and (5.1), respectively.
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Proposition 9.1 Assume that | Im θ | � δ#
j . Then there is a numerical constant c > 0 s.t.

κj ≥ cδ#
j tan(Im θ).

Proof Observe first that this proposition concerns entirely the particle Hamiltonian Hpg :=
eθHPF

pθ . In its proof we omit the subindices p and g.
First we estimate δj in terms of δ#

j . We assume Re θ = 0. By the definitions of δj and of

H := eθHPF
θ we have δj = dist(εPF

j , σ (HPF
θ )/{εPF

j } + e−θ
R+). Since σ(HPF

θ ) = {εPF
i } ∪

e−2θ
R+, this gives

δj = min[dist(εPF
j , σ (HPF )/{εPF

j }),dist(εPF
j , εPF

j−1 + e−θ
R+)]

which can be rewritten as

δj = min(δ#
j , (ε

PF
j − εPF

j−1) tan(Im θ)). (9.3)

This, in particular, gives δ#
j ≥ δj ≥ δ#

j tan(Im θ).

Now we estimate the norm on the r.h.s. of (5.3). We begin with the case of δ = 0. In what
follows λ ∈ Qj is fixed. First, we write P j = P<j +P>j , where P<j :=∑

i<j Pi and P>j :=
1 −∑

i≤j
Pi . Here, recall, Pi are the eigenprojections of H := eθHPF

θ corresponding to the

eigenvalues λi . Since (H − λ)−1P<j = ∑
i<j (λi − λ)−1Pi , we have ‖(H − λ)−1P<j‖ ≤

C(mini<j |λi − λ|)−1. To estimate the r.h.s. of the above inequality we write for λ ∈ Qj

min
i<j

|λi − λ| ≥ min
i<j

| Im(λi − λ)|
≥ min

i<j
| Im(λi − λj )| − | Im(λj − λ)|.

By the definitions of δj and Qj (see (5.1) and (5.2)) and by (9.3), we have | Im(λj − λ)| ≤
1
3δj ≤ 1

3 (εPF
j − εPF

j−1) tan(Im θ)). On the other hand, | Im(λi −λj )| = (εPF
j − εPF

i ) sin(Im θ).
Hence

min
i<j

|λi − λ| ≥ (εPF
j − εPF

j−1)

(
sin(Im θ) − 1

3
tan(Im θ)

)
.

For 0 < Im θ ≤ π/3, this gives mini<j |λi −λ| ≥ 1
3δ#

j sin(Im θ) for any λ ∈ Qj . This, together
with the estimate derived above, yields

‖(H − λ)−1P<j‖ ≤ C(δ#
j sin(Im θ))−1. (9.4)

To estimate (H − λ)−1P>j we write it as the contour integral

(H − λ)−1P>j = 1

2πi
e−θ

∮

�

(
HPF

θ − z
)−1

(z − e−θλ)−1dz, (9.5)

where the contour � is defined as � := μ + iR, where μ := 1
4εPF

j + 3
4εPF

j+1.
Next, expanding e2θVg(e

θx) in θ , we have HPF
θ = e−2θHPF +O(θ). Hence for | Im θ | �

infz∈� dist(z, σ (HPF
θ )) and Re θ = 0, this gives

‖(HPF
θ − z)−1‖ ≤ 2‖(e−2θHPF − z)−1‖ ≤ 2/dist(z, σ (e−2θHPF )).
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Again, by HPF
θ = e−2θHPF + O(θ) and the condition |θ | � infz∈� dist(z, σ (HPF

θ )), the
spectrum of e−2θHPF is at the distance � infz∈� dist(z, σ (HPF

θ )) from the spectrum of
HPF

θ . Using these estimates and using (9.5), we obtain

‖(H − λ)−1P>j‖ ≤ 1

π

∮

�

[dist(z, σ (HPF
θ ))]−1|z − e−θλ|−1dz. (9.6)

We estimate the integrand on the r.h.s. of the above inequality. We have for λ ∈ Qj

|eθ z − λ| ≥ sup
s≥0

(|eθz + s − λj | − |λj − s − λ|).

For z ∈ �, we have infs≥0 |eθz + s − λj | = |z − εPF
j | = [( 3

4 (εPF
j+1 − εPF

j ))2 + (Im z)2]1/2.
Moreover, the definition of Qj and (9.3) imply that supλ∈Qj

infs≥0 |λj − s −λ| ≤ 1
2δj ≤ 1

2δ#
j .

Combining the last three estimates we obtain

inf
λ∈Qj

|eθz − λ| ≥ 1

8
(δ#

j + | Im z|). (9.7)

Next, we have for z ∈ �, dist(z, σ (HPF
θ )) = [(εPF

j+1 − ( 1
4εPF

j + 3
4εPF

j+1))
2 + (Im z)2]1/2 =

[( 1
4 (εPF

j+1 − εPF
j ))2 + (Im z)2]1/2, which gives

dist(z, σ (HPF
θ )) ≥ 1

8
(δ#

j + | Im z|). (9.8)

If | Im θ | � δ#
j , then estimates (9.6)–(9.8) give

‖(H − λ)−1P>j‖ ≤ C(δ#
j )

−1. (9.9)

This together with the estimate (9.4) yields

‖(H − λ)−1‖ ≤ C(δ#
j sin(Im θ))−1.

This gives the desired estimate of the norm on the r.h.s. of (5.3) for δ = 0.
Now we explain how to modify the above estimate in order to bound the norm on the

r.h.s. of (5.3) for δ > 0. First we recall the definitions Hδ := e−ϕHeϕ and P δ
j := e−ϕPje

ϕ

with ϕ = δ〈x〉. By a standard result, for δ sufficiently small,

σ(Hδ) ∩ {Re z ≤ ν} = σ(H) ∩ {Re z ≤ ν}.
This and the boundedness of P δ

j show that the estimate (9.4) remains valid if we replace the
operators H and P<j by the operators Hδ and P δ

<j .
Now to prove the estimate (9.9) with the operator H replaced by the operator Hδ we

use in addition to the estimates above the estimate ‖Rδ(z)‖ ≤ 2‖R(z)‖ for z ∈ � which is
proven as follows. By an explicit computation, Hδ = H + W , where

W := eθ (−∇ϕ · ∇ − ∇ · ∇ϕ − |∇ϕ|2).
Hence for small δ (recall that ϕ(x) := δ〈x〉) the operator Hδ is a relatively small pertur-
bation of the operator H. In particular, for z ∈ �,‖R(z)W‖ ≤ Cδ ≤ 1/2 and Rϕ(z) :=
[1 − R(z)W ]−1R(z), where R(z) = (Hpg − z)−1 and Rδ(z) = (Hδ

pg − z)−1. Using the last
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two relations we estimate ‖Rδ(z)‖ ≤ 2‖R(z)‖ for z ∈ �. This, as was mentioned above, im-
plies the estimate (9.9) with the operators H and P>j replaced by the operators Hδ and P δ

>j .
This completes the proof of the proposition. �

Since εPF
j = ε

(p)

j + O(g2), we have that δ#
j ≥ ε

(p)
gap(ν) − O(g2) for j ≤ j (ν) := max{j :

ε
(p)

j ≤ ν}. Therefore the restriction g � min(κj , ε
(p)
gap(ν)), used above, is implied by the

restriction

g � ε(p)
gap(ν),

imposed in Theorem 3.1. As was mentioned in Sect. 3, Theorem 3.1 and the Combes argu-
ment presented in the paragraph containing (1.6) imply Theorems 1.1 and 1.2, provided we
choose θ to be g-independent and satisfying 0 < Im θ � ε

(p)
gap(ν). This completes the proof

of Theorem 1.1.
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Appendix A: The Smooth Feshbach-Schur Map

In this appendix, we describe properties of the isospectral smooth Feshbach-Schur map
introduced in Sect. 5. In what follows Hg = H0g + Ig ∈ GHμ and we use the definitions of
Sect. 5.

We define the following maps appearing in some identities below:

Qπ(Hg − λ) := π − π̄(Hπ̄ − λ)−1π̄Igπ, (A.1)

Q#
π (Hg − λ) := π − πIgπ̄(Hπ̄ − λ)−1π̄ . (A.2)

Note that Qπ(Hg − λ) ∈ B(Ranπ, H) and Q#
π (Hg − λ) ∈ B(H,Ranπ).

The following theorem, proven in [5] (see [29] for some extensions), states that the
smooth Feshbach-Schur map of Hg − λ is isospectral to Hg − λ.

Theorem A.1 Let Hg = H0g +Ig satisfy (5.6). Then, as was mentioned in Sect. 5, the smooth
Feshbach-Schur map Fπ is defined on Hg − λ and has the following properties:

(i) λ ∈ ρ(Hg) ⇔ 0 ∈ ρ(Fπ(Hg − λ)), i.e. Hg − λ is bounded invertible on H if and only if
Fπ(Hg − λ) is bounded invertible on Ranχ ;

(ii) If ψ ∈ H \ {0} solves Hgψ = λψ then ϕ := χψ ∈ Ranπ \ {0} solves Fχ(Hg −λ)ϕ = 0;
(iii) If ϕ ∈ Ranχ \ {0} solves Fπ(Hg − λ)ϕ = 0 then ψ := Qπ(Hg − λ)ϕ ∈ H \ {0} solves

Hgψ = λψ ;
(iv) The multiplicity of the spectral value {0} is conserved in the sense that dim Ker(Hg −

λ) = dim KerFπ(Hg − λ);
(v) If one of the inverses, (Hg − λ)−1 or Fτ,π (Hg − λ)−1, exists then so does the other and

these inverses are related by

(Hg − λ)−1 = Qπ(Hg − λ)Fπ(Hg − λ)−1Qπ(Hg − λ)# + π̄(Hπ̄ − λ)−1π̄ , (A.3)

and

Fπ(Hg − λ)−1 = π(Hg − λ)−1π + π̄(H0g − λ)−1π̄ .
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Appendix B: Proof of Theorem 7.1

In this appendix we prove Theorem 7.1. As was mentioned in Sect. 7, the proof follows the
lines of the proof of Theorem 4.3 of [26] (cf. Theorem 3.8 of [5] and Theorem 28 of [30]). It
is similar to the proofs of related results of [11, 12]. We begin with some preliminary results.

Recall the notation Hg = H0g + Ig (see (4.1)). According to the definition ((5.7)) of the
smooth Feshbach-Schur map, Fπ , we have that

Fπ

(
Hg − λ

)= H0g − λ + πIgπ − πIgπ̄
(
H0g − λ + π̄Igπ̄

)−1
π̄Igπ. (B.1)

Here, recall, π ≡ π[Hf ] is defined in (5.4) and π̄ ≡ π̄[Hf ] := 1 − π[Hf ]. Note that, due to
(5.19), the Neumann series expansion in π̄Igπ̄ of the resolvent in (B.1) is norm convergent
and yields

Fπ

(
Hg − λ

)= H0g − λ +
∞∑

L=1

(−1)L−1πIg

(
(H0g − λ)−1π̄2Ig

)L−1
π. (B.2)

To write the Neumann series on the right side of (B.2) in the generalized normal form we
use Wick’s theorem, which we formulate now.

We begin with some notation. Recall the definition of the spaces GHmn
μ in Sect. 4. For

Wm,n ∈ GHmn
μ of the form (4.3), we denote Wm,n ≡ Wm,n[w], where w := (wm,n)1≤m+n≤2

with wm,n satisfying (4.4) (not to confuse with the definitions of Sect. 6). We introduce the
operator families

Wm,n
p,q

[
w
∣∣k(m,n)

] :=
∫

B
p+q
1

dx(p,q)

|x(p,q)|1/2
a∗(x(p))

× wm+p,n+q

[
k(m), x(p), k̃(n), x̃(q)

]
a(x̃(q)), (B.3)

for m + n ≥ 0 and a.e. k(m,n) ∈ Bm+n
1 . Here we use the notation for x(p,q), x(p), x̃(q), etc.

similar to the one introduced in (3.2)–(3.4). For m = 0 and/or n = 0, the variables k(0)

and/or k̃(0) are dropped out. Denote by Sm the group of permutations of m elements. Define
the symmetrization operation as

w(sym)
m,n [k(m,n)] := 1

m!n!
∑

π∈Sm

∑

π̃∈Sn

wm,n[kπ(1), . . . , kπ(m); k̃π̃(1), . . . , k̃π̃(n)]. (B.4)

Finally, below we will use the notation

�[k(m)] := |k1| + · · · + |km|, (B.5)

k(M,N) = (k
(1)

(m1,n1), . . . , k
(L)

(mL,nL)), k
(�)

(m�,n�)
= (k

(�)

(m�)
, k̃

(�)

(n�)
), (B.6)

r� := �[k̃(1)

(n1)] + · · · + �[k̃(�−1)

(n�−1)] + �[k(�+1)

(m�+1)] + · · · + �[k(L)

(mL)], (B.7)

r̃� := �[k̃(1)

(n1)] + · · · + �[k̃(�)

(n�)
] + �[k(�+1)

(m�+1)] + · · · + �[k(L)

(mL)], (B.8)

with r� = 0 if n1 = · · ·n�−1 = m�+1 = · · ·mL = 0 and similarly for r̃� and m1 + · · · + mL =
M,n1 + · · · + nL = N .
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Theorem B.1 (Wick Ordering) Let Wm,n ∈ GHmn
μ ,m + n ≥ 1 and Fj ≡ Fj [Hf ], j =

0, . . . ,L, where Fj [r] are operators on the particle space which are Cs functions of r and
satisfy the estimates ‖〈p〉−2+nFj [r]〈p〉−n‖ ≤ C for n = 0,1,2. Write W :=∑

m+n≥1 Wm,n

with Wm,n := Wm,n[wm,n]. Then

F0WF1W · · ·WFL−1WFL = Ppj ⊗ W̃ , (B.9)

where W̃ := W̃ [ w̃ ], w̃ := (w̃
(sym)

M,N )M+N≥0 with w̃
(sym)

M,N given by the symmetrization w.r.t. k(M)

and k̃(N), of the coupling functions

w̃M,N [r; k(M,N)]

=
∑

m1+···+mL=M,

n1+···+nL=N

∑

p1,q1,...,pL,qL :
m�+p�+n�+q�≥1

L∏

�=1

{(
m� + p�

p�

)(
n� + q�

q�

)}

× F0[r + r̃0]
〈
ψ

(p)

j ⊗ �
∣∣W̃1

[
k

(1)

(m1,n1)

]
F1[Hf + r + r̃1]W̃2

[
k

(2)

(m2,n2)

]

× · · ·FL−1[Hf + r + r̃L−1]W̃L

[
k

(L)

(mL,nL)

]
ψ

(p)

j ⊗ �
〉
FL[r + r̃L], (B.10)

with

W̃�

[
k(m�,n�)

] := Wm�,n�
p�,q�

[w|k(m�,n�)]. (B.11)

The proof of this theorem mimics the proof of [12, Theorem A.4].
Next, we mention some properties of the scaling transformation. It is easy to check that

Sρ(Hf ) = ρHf , and hence

Sρ(χρ) = χ1 and ρ−1Sρ

(
Hf

)= Hf , (B.12)

which means that the operator Hf is a fixed point of ρ−1Sρ . Further note that E · 1 is ex-
panded under the scaling map, ρ−1Sρ(E · 1) = ρ−1E · 1, at a rate ρ−1. Furthermore,

ρ−1Sρ

(
Wm,n[w ])= Wm,n

[
sρ(w )

]
(B.13)

where the map sρ is defined by sρ(w ) := (sρ(wm,n))m+n≥0 and, for all (m,n) ∈ N
2
0,

sρ(wm,n)
[
k(m,n)

]= ρm+n−1wm,n

[
ρk(m,n)

]
. (B.14)

As a direct consequence of Theorem B.1 and (5.7), (B.13)–(B.14) and (B.2), we have

Theorem B.2 Let λ ∈ Qj so that Hg − λ ∈ dom(Rρ). Then Rρ(Hg − λ) |Ran(Ppj ⊗1)

−ρ−1
0 (λj − λ) = H(ŵ) where the sequence ŵ is described as follows: ŵ = (ŵ

(sym)

M,N )M+N≥0

with ŵ
(sym)

M,N , the symmetrization w.r.t. k(M) and k̃(N) (as in (B.4)) of the kernels

ŵM,N [r; k(M,N)]

= ρM+N−1
∞∑

L=1

(−1)L−1
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×
∑

m1+···+mL=M,

n1+···+nL=N

∑

p1,q1,...,pL,qL :
m�+p�+n�+q�≥1

L∏

�=1

{(
m� + p�

p�

)(
n� + q�

q�

)}

× Vm,p,n,q[r; k(M,N)], (B.15)

for M + N ≥ 1, and

ŵ0,0[r] = r + ρ−1
∞∑

L=2

(−1)L−1
∑

p1,q1,...,pL,qL :
p�+q�≥1

L∏

�=1

V0,p,0,q[r] (B.16)

for M = N = 0. Here m,p,n, q := (m1,p1, n1, q1, . . . , mL,pL,nL, qL) ∈ N
4L
0 , and

Vm,p,n,q[r; k(M,N)] := 〈ψ(p)

j ⊗ �,gLF0[Hf + r]

×
L∏

�=1

{
W̃�

[
ρk

(�)

(m�,n�)

]
F�[Hf + r]

}
ψ

(p)

j ⊗ �〉 (B.17)

with M := m1 + · · · + mL, N := n1 + · · · + nL, F�[r] := Ppj ⊗ χ1[r + r̃�], for � = 0,L, and

F�[r] := π̄ [ρ(r + r̃�)]2
(
Hpg + ρ(r + r̃�) − λ

)−1
, (B.18)

for � = 1, . . . ,L − 1. Here the notation introduced in (B.3)–(B.8) and (B.11) is used.

We remark that Theorem B.2 determines ŵ only as a sequence of integral kernels that
define an operator in B[F ]. Now we show that ŵ ∈ W μ,s , i.e. ‖ŵ‖μ,s,ξ < ∞. In what follows
we use the notation introduced in (B.3)–(B.8) and (B.11). To estimate ŵ, we start with the
following preparatory lemma

Lemma B.3 Let λ ∈ Qj . For fixed L ∈ N and m,p,n, q ∈ N
4L
0 , we have Vm,p,n,q ∈ W μ,s

M,N

and

∥∥Vm,p,n,q‖μ,s ≤ ρμ+1Ls

(
Cg

ρ

)L L∏

�=1

∥∥wm�+p�,n�+q�

∥∥(0)

μ
. (B.19)

Proof First we derive the estimate (B.19) for μ = 0. Recall that the operators W̃� might be
unbounded. To begin with, we estimate

∣∣Vm,p,n,q [r; k(M,N)]
∣∣≤ gL

∥∥F0[Hf + r]∥∥
L∏

�=1

A�, (B.20)

where A� := ‖W̃�[ρk
(�)

(m�,n�)
]F�[Hf + r]‖. We use the resolvents and cut-off functions hid-

den in the operators F�[Hf + r] in order to bound the creation and annihilation operators
whenever they are present in W̃�.

Recall that the operator F�[Hf + r] we estimate below depends on λ, see (B.18). Now,
we claim that for λ ∈ Qj

∥∥(|p|2 + ρHf + 1)F�[Hf + r]∥∥≤ Cρ−1 (B.21)
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for � = 1, . . . ,L − 1 and ‖(|p|2 + Hf + 1)FL[Hf + r]‖ ≤ C. The last estimate is obvious.
To prove the first estimate we use the inequality (4.2), in order to convert the operator |p|2
into the operator Hpg :

∥∥(|p|2 + ρHf + 1)F�[Hf + r]∥∥
≤ 2

∥∥(Hpg + ρ(Hf + r + r̃�) + 3)F�[Hf + r]∥∥.

Clearly, it suffices to consider λ changing in sufficiently large bounded set. The above esti-
mate gives

∥∥(|p|2 + ρHf + 1)F�[Hf + r]∥∥≤ C
∥∥F�[Hf + r]∥∥+ C. (B.22)

If the operator F�[Hf + r] inside the operator norm on the r.h.s. is normal, as in the case
of the ground state analysis, then its norm can be estimated in terms of its spectrum. For
non-normal operators we proceed as follows. Using that π̄[Hf ] := Ppj ⊗ χHf ≥ρ + P̄pj ⊗ 1,
we write

F�[Hf + r] := Ppj ⊗ [χs≥ρ]2
(
λj + s − λ

)−1 + P̄pj ⊗ 1
(
H̄pg + s − λ

)−1
, (B.23)

where s := ρ(Hf + r + r̃�), recall, P̄pj := 1 − Ppj and H̄pg := HpgP̄p . Now, since Re(λj −
λ) ≥ −ρ/2 ≥ −s/2 for λ ∈ Qj and s ≥ ρ, we have that λj + s − λ ≥ ρ/2 for the first term
on the r.h.s. For the second term on the r.h.s., we observe that by the spectral decomposition
of the operator s in (B.23) we have

sup
λ∈Qj

‖(P̄pj ⊗ 1)(H̄pg + s − λ)−1‖ ≤ sup
λ∈Qj ,μ≥0

‖P̄pj (H̄pg + μ − λ)−1‖part . (B.24)

Since Qj − [0,∞) = Qj and due to (5.3) we have

sup
λ∈Qj

‖(P̄pj ⊗ 1)(H̄pg + s − λ)−1‖ ≤ sup
λ∈Qj

‖P̄pj (H̄pg − λ)−1‖part ≤ κ−1
j . (B.25)

Since ρ ≤ κj , the last estimate, together with the estimate of the first term on the r.h.s. of
(B.23) mentioned above, yields ‖F�[Hf + r]‖ ≤ Cρ−1 for � = 1, . . . ,L − 1. This, due to
(B.22), implies the estimate (B.21).

Next, since W̃�[ρk
(�)

(m�,n�)
] contain products of p� + q� ≤ m� + p� + n� + q� ≤ 2 creation

and annihilation operators (see (B.3) and (B.11) and the paragraph after (4.1)), we have, by
(4.4), (5.20)–(5.23) and similar estimates (cf. (6.10)), that

∥∥∥W̃�

[
ρk

(�)

(m�,n�)

]〈p〉−(2−s�)(Hf + 1)−s�/2
∥∥∥≤ C‖wm′

�
,n′

�
‖(0)

0 , (B.26)

where m′
� := m� + p� and n′

� := n� + q� and s� := m′
� + n′

� (remember that s� ≤ 2). Conse-
quently,

A� ≤ Cρ−1+δ�,L‖wm′
�
,n′

�
‖(0)

0 . (B.27)

Now, since ‖F0[Hf + r]‖op ≤ 1 we find from (B.20) and (B.26) that

∣∣Vm,p,n,q [r; k(M,N)]
∣∣≤ ρ

(
Cg

ρ

)L L∏

�=1

∥∥wm�+p�,n�+q�

∥∥(0)

0
(B.28)
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and similarly for the r-derivatives. This proves the isotropic, (B.19) with μ = 0, bound on
the functions Vm,p,n,q [r; k(M,N)].

Now we prove the anisotropic, μ > 0, bound on Vm,p,n,q [r; k(M,N)]. Let ϕ(x) := δ〈x〉 for
δ sufficiently small. Define for � = 1, . . . ,L − 1

F δ
� [Hf + r] := e−ϕF�[Hf + r]eϕ

and

W̃ δ
�

[
k

(�)

(m�,n�)

] := e−ϕW̃�

[
k

(�)

(m�,n�)

]
eϕ.

Note that this transformation effects only the particle variables.
Exactly in the same way as we proved the bounds (B.21), with � = 1, . . . ,L− 1, one can

show the following estimates

∥∥(|p|2 + ρHf + 1)F δ
� [Hf + r]∥∥≤ Cρ−1, (B.29)

provided λ ∈ Qj and δ ≤ δ0.
Now, expression (B.17) can be rewritten for any j as

Vm,p,n,q [r; k(M,N)] := gLF0[Hf + r]eϕ

j−1∏

�=1

{
W̃ δ

�

[
ρk

(�)

(m�,n�)

]
F δ

� [Hf + r]
}

× e−ϕW̃j

[
ρk

(j)

(mj ,nj )

]
Fj [Hf + r]

L∏

�=j+1

{
W̃�

[
ρk

(�)

(m�,n�)

]
F�[Hf + r]

}
.

Since, by the definition, the operator F0[Hf + r] contains the projection, Pp , we conclude
that the operator F0[Hf + r]eϕ is bounded. Hence we obtain for j = 1, . . . ,L

∣∣Vm,p,n,q[r; k(M,N)]
∣∣≤ CgLÃδ

j

j−1∏

�=1

Aδ
�

L∏

�=j+1

A�, (B.30)

where Aδ
� := ‖W̃ δ

� [ρk
(�)

(m�,n�)
]F δ

� [Hf + r]‖ and Ãδ
j := ‖e−ϕW̃�[ρk

(�)

(m�,n�)
]F�[Hf + r]‖. Fur-

thermore, since W̃ δ
� [ρk

(�)

(m�,n�)
] contain products of p� + q� ≤ 2 creation and annihilation

operators (see (B.3) and (B.11)), we have, by (4.4), (5.20)–(5.23) and similar estimates (cf.
(6.10)), that

∥∥∥W̃ δ
�

[
ρk

(�)

(m�,n�)

]〈p〉−(2−s�)(Hf + 1)−s�/2
∥∥∥≤ C‖wm′

�
,n′

�
‖(0)

0 (B.31)

and
∥∥∥e−ϕW̃�

[
ρk

(�)

(m�,n�)

]〈p〉−(2−s�)(Hf + 1)−s�/2
∥∥∥≤ C|ρk

(�)

(m�,n�)
|μ‖wm′

�
,n′

�
‖(0)

μ , (B.32)

where m′
� := m� + p� and n′

� := n� + q� and s� := m′
� + n′

�. Consequently,

Aδ
� ≤ Cρ−1‖wm′

�
,n′

�
‖(0)

0 and Ãδ
j ≤ Cρμ−1|k(j)

(mj ,nj )|μ‖wm′
j
,n′

j
‖(0)

μ . (B.33)

Putting the equations (B.30), (B.33) and (B.27) together we arrive at
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∣∣Vm,p,n,q [r; k(M,N)]
∣∣

≤ ρμ+1

(
Cg

ρ

)L

|k(j)

(mj ,nj )|μ
∥∥wmj +pj ,nj +qj

∥∥(0)

μ

1,L∏

��=j

∥∥wm�+p�,n�+q�

∥∥(0)

0
(B.34)

and similarly for the r-derivatives. Since any i, ki is contained, as a 3-dimensional compo-
nent, in k

(j)

(mj ,nj ) for some j , we find (B.19). �

Proof of Theorem 7.1 As was mentioned above we present here only the case s = 1, which
is needed in this paper. Recall that we assume ρ ≤ 1/2 and we choose ξ = 1/4. First, we
apply Lemma B.3 to (B.15) and use that

(
m+p

p

)≤ 2m+p . This yields

∥∥ŵM,N

∥∥
μ,s

≤
∞∑

L=1

ρμLs

(
Cg

ρ

)L(
2ρ
)M+N

×
∑

m1+···+mL=M,

n1+···+nL=N

∑

p1,q1,...,pL,qL :
m�+p�+n�+q�≥1

L∏

�=1

{
2p�+q�

∥∥wm�+p�,n�+q�

∥∥(0)

μ

}
. (B.35)

Using the definition (6.16) and the inequality 2ρ ≤ 1, we derive the following bound for
ŵ1 := (ŵM,N)M+N≥1,

∥∥ŵ1‖μ,s,ξ :=
∑

M+N≥1

ξ−(M+N)
∥∥ŵM,N‖μ,s

≤ 2ρμ+1
∞∑

L=1

Ls

(
Cg

ρ

)L ∑

M+N≥1

∑

m1+···+mL=M,

n1+···+nL=N

∑

p1,q1,...,pL,qL :
m�+p�+n�+q�≥1

×
L∏

�=1

{
(2ξ)p�+q�ξ−(m�+p�+n�+q�)

∥∥wm�+p�,n�+q�

∥∥(0)

μ

}

≤ 2ρμ+1
∞∑

L=1

Ls

(
Cg

ρ

)L

×
{
∑

m+n≥1

(
m∑

p=0

(2ξ)p

)(
n∑

q=0

(2ξ)q

)
ξ−(m+n)‖wm,n‖(0)

μ

}L

.

Let
∥∥w1‖(0)

μ,ξ :=∑
M+N≥1 ξ−(m+n)

∥∥wm,n‖(0)
μ , where, recall, w1 := (wm,n)m+n≥1 (we introduce

this norm in order to ease the comparison with the results of [5]). Using the assumption
ξ = 1/4 and the estimate

∑m

p=0(2ξ)p ≤∑∞
p=0(2ξ)p = 1

1−2ξ
, we obtain

∥∥ŵ1‖μ,s,ξ ≤ 2ρμ+1
∑∞

L=1 LsBL, (B.36)

where

B := Cg

ρ(1 − 2ξ)2

∥∥w1

∥∥(0)

μ,ξ
. (B.37)
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Our assumption g � ρ also insures that B ≤ 1
2 . Thus the geometric series on the r.h.s.

of (B.36) is convergent. We obtain for s = 0,1

∞∑

L=1

LsBL ≤ 8B. (B.38)

Inserting (B.38) into (B.36), we see that the r.h.s. of (B.36) is bounded by 16ρμ+1B which,
remembering the definition of B and the choice ξ = 1/4, gives

∥∥ŵ1‖μ,s,ξ ≤ 64Cgρμ
∥∥w1

∥∥(0)

μ,ξ
. (B.39)

Next, we estimate ŵ0,0. We analyze the expression (B.16). Using estimate (B.19) with
m = 0, n = 0 (and consequently, M = 0,N = 0), we find

ρ−1
∥∥V0,p,0,q‖μ,s ≤ Lsρμ

(
Cg

ρ

)L L∏

�=1

∥∥wp�,q�

∥∥(0)

μ
. (B.40)

In fact, examining the proof of Lemma B.3 more carefully we see that the following, slightly
stronger estimate is true

ρ−1 sup
r∈I

∣∣∂s
r V0,p,0,q[r]

∣∣≤ Lsρμ+s

(
Cg

ρ

)L L∏

�=1

∥∥wp�,q�

∥∥(0)

μ
. (B.41)

Now, using (B.41), we obtain

ρ−1
∞∑

L=2

∑

p1,q1,...,pL,qL :
p�+q�≥1

sup
r∈I

∣∣∂s
r V0,p,0,q[r]

∣∣

≤ ρs+μ

∞∑

L=2

Ls

(
Cg

ρ

)L{ ∑

p+q≥1

∥∥wp,q

∥∥(0)

μ

}L

≤ ρs+μ

∞∑

L=2

LsDL,

where D := Cgξρ−1‖∂s
r w1‖μ,0,ξ with, recall, w1 := (wm,n)m+n≥1. Now, similarly to (B.38),

using that
∑∞

L=2 LsDL ≤ 12D2, for D satisfying D ≤ 1/2 (recall g � ρ), we find for s =
0,1

ρ−1
∞∑

L=2

∑

p1,q1,...,pL,qL :
p�+q�≥1

sup
r∈I

∣∣∂s
r V0,p,0,q[r]

∣∣≤ 12ρs+μ

(
Cgξ

ρ

∥∥w1

∥∥(0)

μ,ξ

)2

. (B.42)

Next, (B.16) and (B.42) yield

∣∣ŵ0,0[0]∣∣≤ 12ρμ

(
Cgξ

ρ

∥∥w1

∥∥(0)

μ,ξ

)2

. (B.43)
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We find furthermore that

sup
r∈[0,∞)

∣∣∂rŵ0,0[r] − 1
∣∣≤ 12ρμ+1

(
Cgξ

ρ

∥∥w1

∥∥(0)

μ,ξ

)2

. (B.44)

Now, recall that ‖w1‖(0)
μ,ξ ≤ C and ξ = 1/4. Hence (B.43), (B.44) and (B.39) give (7.2)

with s = 1, α = 12ρμ(
Cg

ρ
)2, β = 12ρμ+1(

Cg

ρ
)2 and γ = Cρμg. This implies the statement

of Theorem 7.1. �

Appendix C: Background on the Fock Space, etc.

Let h be either L2(R3,C, d3k) or L2(R3,C
2, d3k). In the first case we consider h as the

Hilbert space of one-particle states of a scalar Boson or a phonon, and in the second case, of
a photon. The variable k ∈ R

3 is the wave vector or momentum of the particle. (Recall that
throughout this paper, the velocity of light, c, and Planck’s constant, �, are set equal to 1.)
The Bosonic Fock space, F , over h is defined by

F :=
∞⊕

n=0

Snh
⊗n, (C.1)

where Sn is the orthogonal projection onto the subspace of totally symmetric n-particle wave
functions contained in the n-fold tensor product h⊗n of h; and S0h

⊗0 := C. The vector � :=
1
⊕∞

n=1 0 is called the vacuum vector in F . Vectors � ∈ F can be identified with sequences
(ψn)

∞
n=0 of n-particle wave functions, which are totally symmetric in their n arguments, and

ψ0 ∈ C. In the first case these functions are of the form, ψn(k1, . . . , kn), while in the second
case, of the form ψn(k1, λ1, . . . , kn, λn), where λj ∈ {−1,1} are the polarization variables.

In what follows we present some key definitions in the first case only limiting ourselves
to remarks at the end of this appendix on how these definitions have to be modified for the
second case. The scalar product of two vectors � and � is given by

〈�,�〉 :=
∞∑

n=0

∫ n∏

j=1

d3kjψn(k1, . . . , kn)ϕn(k1, . . . , kn). (C.2)

Given a one particle dispersion relation ω(k), the energy of a configuration of n non-
interacting field particles with wave vectors k1, . . . , kn is given by

∑n

j=1 ω(kj ). We define
the free-field Hamiltonian, Hf , giving the field dynamics, by

(Hf �)n(k1, . . . , kn) =
(

n∑

j=1

ω(kj )

)
ψn(k1, . . . , kn), (C.3)

for n ≥ 1 and (Hf �)n = 0 for n = 0. Here � = (ψn)
∞
n=0 (to be sure that the r.h.s. makes

sense we can assume that ψn = 0, except for finitely many n, for which ψn(k1, . . . , kn)

decrease rapidly at infinity). Clearly that the operator Hf has the single eigenvalue 0 with
the eigenvector � and the rest of the spectrum absolutely continuous.

With each function ϕ ∈ h one associates an annihilation operator a(ϕ) defined as fol-
lows. For � = (ψn)

∞
n=0 ∈ F with the property that ψn = 0, for all but finitely many n, the
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vector a(ϕ)� is defined by

(a(ϕ)�)n(k1, . . . , kn) := √
n + 1

∫
d3kϕ(k)ψn+1(k, k1, . . . , kn). (C.4)

These equations define a closable operator a(ϕ) whose closure is also denoted by a(ϕ).
Equation (C.4) implies the relation

a(ϕ)� = 0. (C.5)

The creation operator a∗(ϕ) is defined to be the adjoint of a(ϕ) with respect to the scalar
product defined in (C.2). Since a(ϕ) is anti-linear, and a∗(ϕ) is linear in ϕ, we write formally

a(ϕ) =
∫

d3kϕ(k)a(k), a∗(ϕ) =
∫

d3kϕ(k)a∗(k), (C.6)

where a(k) and a∗(k) are unbounded, operator-valued distributions. The latter are well-
known to obey the canonical commutation relations (CCR):

[
a#(k), a#(k′)

]= 0,
[
a(k), a∗(k′)

]= δ3(k − k′), (C.7)

where a# = a or a∗.
Now, using this one can rewrite the quantum Hamiltonian Hf in terms of the creation

and annihilation operators, a and a∗, as

Hf =
∫

d3ka∗(k)ω(k)a(k), (C.8)

acting on the Fock space F .
More generally, for any operator, t , on the one-particle space h we define the operator T

on the Fock space F by the following formal expression T := ∫
a∗(k)ta(k)dk, where the

operator t acts on the k-variable (T is the second quantization of t ). The precise meaning
of the latter expression can obtained by using a basis {φj } in the space h to rewrite it as
T :=∑

j

∫
a∗(φj )a(t∗φj )dk.

To modify the above definitions to the case of photons, one replaces the variable k by
the pair (k, λ) and adds to the integrals in k also the sums over λ. In particular, the cre-
ation and annihilation operators have now two variables: a#

λ(k) ≡ a#(k, λ); they satisfy the
commutation relations

[
a#

λ(k), a#
λ′(k′)

]= 0,
[
aλ(k), a∗

λ′(k′)
]= δλ,λ′δ3(k − k′). (C.9)

One can also introduce the operator-valued transverse vector fields by

a#(k) :=
∑

λ∈{−1,1}
eλ(k)a#

λ(k),

where eλ(k) ≡ e(k,λ) are polarization vectors, i.e. orthonormal vectors in R
3 satisfying k ·

eλ(k) = 0. Then in order to reinterpret the expressions in this paper for the vector (photon)—
case one either adds the variable λ as was mentioned above or replaces, in appropriate places,
the usual product of scalar functions or scalar functions and scalar operators by the dot
product of vector-functions or vector-functions and operator valued vector-functions.
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Appendix D: Nelson Model

In this appendix we describe the Nelson model describing the interaction of electrons with
quantized lattice vibrations. The Hamiltonian of this model is

HN
g = HN

0 + IN
g , (D.1)

acting on the state space, H = Hp ⊗ F , where now F is the Fock space for phonons, i. e.
spinless, massless Bosons. Here g is a positive parameter—a coupling constant—which we
assume to be small, and

HN
0 = HN

p + Hf , (D.2)

where HN
p = Hp and Hf are given in (1.2) and (1.4), respectively, but, in the last case, with

the scalar creation and annihilation operators, a and a∗, and where the interaction operator
is IN

g := gI with

I :=
∫

κ(k)d3k

|k|1/2

{
e−ikxa∗(k) + eikxa(k)

}
(D.3)

(we can also treat terms quadratic in a and a∗ but for the sake of exposition we leave such
terms out). Here, κ = κ(k) is a real function with the property that

|κ(k)| ≤ const × min{1, |k|μ}, (D.4)

with μ > 0, and
∫

d3k

|k| |κ(k)|2 < ∞. (D.5)

In the following, κ is fixed and g varies. It is easy to see that the operator I is symmetric
and bounded relative to H0, with the zero relative bound (see [58] for the corresponding
definitions). Thus HN

g is self-adjoint on the domain of H0 for arbitrary g. Of course, for the
Nelson model we can take an arbitrary dimension d ≥ 1 rather than the dimension 3.

The complex deformation of the Nelson Hamiltonian is defined as (first for θ ∈ R)

HN
gθ := UθH

SM
g U−1

θ . (D.6)

Under Condition (DA), there is a Type-A ([50]) family HN
gθ of operators analytic in the

domain | Im θ | < θ0, which is equal to (D.6) for θ ∈ R and s.t. HN∗
gθ = HN

gθ
,

HN
gθ = URe θH

N
gi Im θU

−1
Re θ . (D.7)

Furthermore, HN
gθ can be written as

HN
gθ = HN

pθ ⊗ 1f + e−θ1p ⊗ Hf + IN
gθ , (D.8)

where HN
pθ := UpθH

N
p U−1

pθ and IN
gθ := UθI

N
g U−1

θ .
In the Nelson model case one can weaken the restriction on the parameter ρ to ρ � g2.

One proceeds as follows. Assume for the moment that the parameter λ is real. Then the
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operator R0 is non-negative and, due to (5.13) and (6.10), with m + n ≤ 1, and the fact that
the operator I is a sum of creation and annihilation operators, we have

∥∥R1/2
0 IgR

1/2
0

∥∥≤ Cρ−1/2g, (D.9)

where R
1/2
0 := (H0g − λ)−1/2π . Hence the following series

∞∑

n=0

R
1/2
0

(
gR

1/2
0 IgR

1/2
0

)n
R

1/2
0

is well defined, converges absolutely and is equal to π(Hπ − λ)−1π . Estimating this series
gives the desired estimate (4.4) in the case of real λ. For complex λ we proceed in the
same way replacing the factorization R0 = R

1/2
0 R

1/2
0 , we used, by the factorization R0 =

|R0|1/2U |R0|1/2, where |R0|1/2 := |H0g −λ|−1/2π̄ and U is the unitary operator U := (H0g −
λ)−1|H0g − λ|.
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